期刊文献+

基于差频中红外激光的痕量气体高分辨光谱检测研究 被引量:14

Research on the High Resolution Trace Gas Detection Based on the Difference-frequency Mid-infrared Spectrometer
下载PDF
导出
摘要 研究了基于差频光源的高分辨中红外激光光谱检测系统,差频中红外光源使用两台近红外半导体激光器作为种子光源,采用PPLN晶体作为非线性混频器件,结合准相位匹配技术实现了3.2~3.7μm中红外相干光源输出,最大差频输出功率约为1μW.以CH4为例检验了系统的高分辨红外光谱检测特性,选择CH4分子3028.751cm-1 v3基频吸收线作为分析谱线,10cm光程的检测限为0.8ppm.光谱数据分析表明,系统检测限主要受到标准具光学噪音的限制. Mid-infrared spectral region is favorable for high sensitivity trace gas detection.The development and characterization of a compact mid-infrared laser spectrometer for high resolution spectroscopic detection of trace gases is reported.Continuous-wave mid-infrared radiation is generated by difference-frequency mixing of outputs of two commercial narrow linewidth diode lasers.A maximum mid-infrared radiation power of 1 μW at 3.31 μm is generated,and the wavelength tuning region is around 3.2 μm to 3.7 μm.The high-resolution spectroscopy capability of this spectrometer is evaluated by trace CH4 measurement,the line at 3 028.751 cm-1 of v3 fundamental vibrational band of CH4 is chosen as target analysis line for this line is relatively free of interference by other gas species.The detection sensitivity for CH4 is estimated to be 0.8 ppm for 10 cm optical path length at atmospheric pressure,and the limitation is supposed mainly from the etalon noise of optical surfaces.
出处 《光子学报》 EI CAS CSCD 北大核心 2012年第6期678-683,共6页 Acta Photonica Sinica
基金 国家自然科学基金(No.60908018) 中国博士后科学基金(No.20100470861) 安徽省高校省级科学研究重点项目(No.KJ2011A21) 中国科学院环境光学与技术重点实验室开放基金(No.2010DP183061)资助
关键词 激光光谱 中红外 差频 气体检测 Laser spectroscopy Mid-infrared Difference-frequency generation(DFG) Gas sensing
  • 相关文献

参考文献14

  • 1WERLE P,SLEMR F,MAURER K. Near-and midinfrared laser-optical sensors for gas analysis[J].Optics and Laser in Engineering,2002,(2-3):101-114.
  • 2FRIED A,HENRY B,WERT B. Laboratory,groundbased,and airhorne tunable diode laser systems:performance characteristics and applications in atmospheric studies[J].Applied Physics B,1998,(03):317-330.doi:10.3109/01443615.2011.593646.
  • 3GMACHL C,STRAUB A,COLOMBELLI R. Singlemode.tunable distributed feedback and multiple wavelength quantum cascade lasers[J].IEEE Journal of Quantum Electronics,2002,(06):569-581.doi:10.1109/JQE.2002.1005407.
  • 4BAKHIRKIN Y A,KOSTEREV A A,CURL R F. Sub-ppbv nitric oxide concentration measurements using cw room temperature quantum cascade laser based integrated cavity spectroscopy[J].Applied Physics B,2006,(01):149-154.doi:10.1007/s00340-005-2058-0.
  • 5ARMIN L. Quantum cascade lasers,systems,and applications in Europe[J].Spie,2005.122-133.doi:10.1038/cdd.2011.71.
  • 6WEIDMANN D,KOSTEREV A A,ROLLER C. Monitoring of ethylene by a pulsed quantum cascade laser[J].Applied Optics,2004,(16):3329-3334.doi:10.1364/AO.43.003329.
  • 7CORNELIA F,MARKUS W S. Mid-IR difference frequency generation[J].Topics Applied Physics,2003.97-143.
  • 8RICHTER D,FRIED A,WERT B P. Development of a tunable mid-IR difference frequency laser source for highly sensitivc airborne trace gas detection[J].Applied Physics B,2002,(2-3):281-288.doi:10.1007/s00340-002-0948-y.
  • 9GOLDBERG L,KOPLOW J,LANCASYER D G. Midinfrared difference frequency gcneration source pumped by a 1.1 ~ 1.5 μm dual-wavclength fiber amplifier for trace gas detection[J].Optics Letters,1998,(19):1517.doi:10.1364/OL.23.001517.
  • 10JUNDT D. Ternperature-dependent selhneier equation for the index of refraction,ne,in congruent lithium niobate[J].Optics Letters,1997,(20):1553-1555.doi:10.1364/OL.22.001553.

二级参考文献16

  • 1姚江宏,薛亮平,颜博霞,贾国治,许京军,张光寅.周期极化掺镁铌酸锂晶体的光学参量振荡[J].中国激光,2007,34(2):209-213. 被引量:23
  • 2邓颖,朱启华,曾小明,张颖,王凤蕊,谢旭东,王逍,黄征,郭仪,孙立.MgO∶LiNbO_3晶体中超短中红外非共线相位匹配光参量放大过程角度的优化选择[J].中国激光,2007,34(7):915-919. 被引量:1
  • 3Werle P, Slemr F, Maurer K et al.. Near and mid infrared laser-optical sensors for gas analysis [J]. Opt. Lasers Engng. 2002, a7:101-114.
  • 4Cornelia F, Markus W. Sigrist. Mid-IR difference frequency generation[J]. Topics. Appl. Phys. 2003, 89:97-143.
  • 5Chen W, Mouret G, Boucher D et al.. Mid infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4[J]. Appl. Phys. B, 2001,72: 873-876.
  • 6Richter D, Fried A, Wert B P et al.. Development of a tunable mid IR difference frequency laser source for highly sensitive airborne trace gas detection[J]. Appl. Phys. B, 2002, 75: 281-288.
  • 7Fried A, Henry B, Wert B et al.. Laboratory, ground-based, and airborne tunable diode laser systems:performance characteristics and applications in atmospheric studies[J]. Alpl. Phys. B, 1998, 67:317-330.
  • 8Gmachl C, Straub A, Colombelli R et al.. Single-mode, tunable distributed-feedback and multiple wavelength quantum cascade lasers[J]. IEEE Quant. Electron. , 2002, 88(6) :569-581.
  • 9Armin L. Quantum cascade lasers, systems, and applications in Europe[C]. SPIE,2005, 5732:122-133.
  • 10Zhang Xingbao, Yao Baoquan, Wang Yuezhu et al.. Middleinfrared intracavity periodically MgO: LiNbOa optical parametric oscillator. Chin. Opt. Lett. , 2007, 5(7):426-427.

共引文献6

同被引文献120

引证文献14

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部