期刊文献+

基于最短主干道距离的零售户聚类研究

A Retailer Cluster Research Based on the Shortest Arterial Road Distance(SARD)
下载PDF
导出
摘要 在研究零售户聚类分析中,传统的k中心聚类方法,计算成本过大,无法有效应用于大数据集.提出了零售户聚类方法,继承CLARANS算法迭代思想,采用全局随机抽样技术,将算法应用于大型空间数据集,通过多次迭代尽量寻求最优聚类结果.聚类结果的评价标准为基于最短主干道距离(SARD)的总距离.该聚类算法是在CLARANS算法的基础上进行改进,使其能够处理带地理信息的数据对象,且聚类结果满足需求约束条件限制. In the study of retailer cluster analysis,the traditional k center cluster method can not be used effectively for large data sets because of too much computation.A method of retailer cluster analysis based on the CLARANS iterative algorithm is proposed and the global random sampling technique is used in this method to deal with the large spatial data sets.Optimal cluster results may be obtained through several iterations.An evaluation criterion of the cluster results is the total distance that based on the Shortest Arterial Road Distance(SARD).The cluster algorithm is improved based on the CLARANS algorithm and can be used to process data with geographic information,and its results can meet the demand constraint conditions.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期306-312,共7页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金资助项目(71172168)
关键词 聚类算法 最短主干道距离 差异度 cluster algorithm the shortest arterial road distance(SARD) variability
  • 相关文献

参考文献9

  • 1Jiawei Han,Mieheline Kamber. Data Mining Concepts and Techniques[M].New York:Academic Press,Inc,2001.261-263.
  • 2Zhang Tian,Raghu Ramakrishnan,Miron Livny. BIRCH;An Efficient Data Clustering Method for Very Large Databases[A].Montreal,Canada,1996.103-114.
  • 3Ester M,Sander J,Xu X. A Density-based Algorithm for Discovering Clusters in Large Databases[A].Portland,Oregon,USA,1996.226-231.doi:10.1016/j.jacr.2010.01.014.
  • 4Sheikholeslami G,Chatterjee S,Zhang A. WaveCluster:A Multi-Resolution Clustering Approach for Very Large Spatial Databases[A].New York,1998.428-439.
  • 5Guha S,Rastogi R,Shim K. Cure:An Efficient Clustering Algorithm for Large Databases[A].Seattle,Washington,1998.73-84.
  • 6Raymond T Ng,Jiawei Han. Efficient and Effective Clustering Methods for Spatial Data Mining[A].Santiago,Chile,1994.144-155.doi:10.1109/TASL.2010.2092768.
  • 7杜秀亭,高学东.零售户聚类分析中基于最短主干道距离的差异度计算方法[J].内蒙古大学学报(自然科学版),2010,41(5):580-582. 被引量:1
  • 8贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 9孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072

二级参考文献38

  • 1许志海,张昭云.交通限制条件下的最短路径算法分析与优化[J].测绘学院学报,2005,22(1):62-64. 被引量:7
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3开放的API服务在地图上的应用[EB/0L].http:∥developer.openapiservice.com/.2009-12-02.
  • 4365地图API服务操作方法详解[EB/OL].http:∥www.17173gps.com/yejiedongtai/200906/27-4201.html.2009-12-21.
  • 5图吧烟草行业地图应用解决方案[EB/OL].http:∥www.mapbar.com/DiTuYingYong/YanCaoHangYe.html.2010-02-21.
  • 6Wu Sen, Gu Shujuan. A Cluster Description Method for High Dimensional Data Clustering with Categorical Variables[C]//Proc. of 2010 International Conference on Measuring Technology and Mechatronics Automation, 2010,1 :32-35.
  • 7Guha S,Rastogi R,Shim K.CURE:An Efficient Clustering Algorithm for Large Databases[C].Seattle:Proceedings of the ACM SIGMOD Conference,1998.73-84.
  • 8Guha S,Rastogi R,Shim K.ROCK:A Robust Clustering Algorithm for Categorical Attributes[C].Sydney:Proceedings of the 15th ICDE,1999.512-521.
  • 9Karypis G,Han E-H,Kumar V.CHAMELEON:A Hierarchical Clustering Algorithm Using Dynamic Modeling[J].IEEE Computer,1999,32(8):68-75.
  • 10Ester M,Kriegel H-P,Sander J,et al.A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C].Portland:Proceedings of the 2nd ACM SIGKDD,1996.226-231.

共引文献1259

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部