期刊文献+

Modeling Carbon and Water Budgets in the Lushi Basin with Biome-BGC 被引量:1

Modeling Carbon and Water Budgets in the Lushi Basin with Biome-BGC
下载PDF
导出
摘要 In this article, annual evapotranspiration(ET) and net primary productivity (NPP) of fourtypes of vegetation were estimated for the Lushi basin,a subbasin of the Yellow River in China. These fourvegetation types include: deciduous broadleaf forest,evergreen needle leaf forest, dwarf shrub and grass.Biome-BGC--a biogeochemical process model wasused to calculate annual ET and NPP for eachvegetation type in the study area from 1954 to 2000.Daily microclimate data of 47 years monitored byLushi meteorological station was extrapolated tocover the basin using MT-CLIM, a mountainmicroclimate simulator. The output files of MT-CLIM were used to feed Biome-BGC. We usedaverage ecophysiological values of each type ofvegetation supplied by Numerical TerradynamicSimulation Group (NTSG) in the University ofMontana as input ecophysiological constants file.The estimates of daily NPP in early July and annualET on these four biome groups were comparedrespectively with field measurements and other studies.Daily gross primary production (GPP) of evergreenneedle leaf forest measurements were very close tothe output of Biome-BGC, but measurements ofbroadleaf forest and dwarf shrub were much smallerthan the simulation result. Simulated annual ET andNPP had a significant correlation with precipitation,indicating precipitation is the major environmentalfactor affecting ET and NPP in the study area.Precipitation also is the key climatic factor for theinterannual ET and NPP variations. In this article, annual evapotranspiration(ET) and net primary productivity (NPP) of fourtypes of vegetation were estimated for the Lushi basin,a subbasin of the Yellow River in China. These fourvegetation types include: deciduous broadleaf forest,evergreen needle leaf forest, dwarf shrub and grass.Biome-BGC--a biogeochemical process model wasused to calculate annual ET and NPP for eachvegetation type in the study area from 1954 to 2000.Daily microclimate data of 47 years monitored byLushi meteorological station was extrapolated tocover the basin using MT-CLIM, a mountainmicroclimate simulator. The output files of MT-CLIM were used to feed Biome-BGC. We usedaverage ecophysiological values of each type ofvegetation supplied by Numerical TerradynamicSimulation Group (NTSG) in the University ofMontana as input ecophysiological constants file.The estimates of daily NPP in early July and annualET on these four biome groups were comparedrespectively with field measurements and other studies.Daily gross primary production (GPP) of evergreenneedle leaf forest measurements were very close tothe output of Biome-BGC, but measurements ofbroadleaf forest and dwarf shrub were much smallerthan the simulation result. Simulated annual ET andNPP had a significant correlation with precipitation,indicating precipitation is the major environmentalfactor affecting ET and NPP in the study area.Precipitation also is the key climatic factor for theinterannual ET and NPP variations.
出处 《Chinese Journal of Population,Resources and Environment》 北大核心 2005年第2期27-34,共8页 中国人口·资源与环境(英文版)
关键词 Carbon and water budgets BIOME-BGC the Lushi basin EVAPOTRANSPIRATION netprimary productivity (NPP) gross primaryproduction (GPP) Carbon and water budgets, Biome-BGC, the Lushi basin, evapotranspiration, netprimary productivity (NPP), gross primaryproduction (GPP)
  • 相关文献

参考文献4

二级参考文献84

共引文献208

同被引文献47

引证文献1

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部