期刊文献+

层状二嵌段共聚物与纳米棒共混体系的自组装

Self-assembly of mixtures of two diblock copolymers and nanorods
下载PDF
导出
摘要 采用耗散粒子动力学(DPD)方法研究了层状二嵌段共聚物与纳米棒共混体系的自组装行为.系统地考虑了棒的粒子数比、长度及棒与高分子间的相互作用等因素对混合体系自组装的影响.一系列的构型及相转变都是在共聚物的相分离与纳米棒的聚集相行为共同作用下的结果.当把纳米棒掺入到高分子体系时,从熵和焓的角度可以更本质地理解共混体系的自组装,尤其是棒的相行为.从焓方面,纳米棒与各高分子链段间相互作用决定了棒的分布;从熵方面,棒的各向异性、相区域的空间约束及高分子链的构象熵共同决定了棒的取向. The self-assembled phase behaviors of lamellar block copolymers and nanorods mixtures were investigated by dissipative particle dynamics(DPD) simulations.A series of parameters,such as nanorod concentration,length,and the polymer-nanorod interaction,are introduced to analyze the cooperative phase behavior and novel morphologies of hybrids.The final phase structures of the mixtures result from the mutual inducement between mesophase-forming copolymers and nanorods aggregates.When nanorods are mixed into the polymer fluids,it is used for understanding the intrinsic characteristics of the composite self-assembly by considering the enthalpic and entropic interactions,especially for the rods' phase behaviors.The nanorods distributions reveal a degree of enthalpically driven self-assembly,due to the interactions among species.The nanorods' orientation show a degree of entropically generated self-assembly,based on the competition among the inherent shape anisotropy of nanorods,confinement of host phase separated domains,and the conformational entropy of chains.
出处 《浙江大学学报(理学版)》 CAS CSCD 2012年第1期38-42,共5页 Journal of Zhejiang University(Science Edition)
关键词 耗散粒子动力学 嵌段共聚物 纳米棒 自组装 dissipative particle dynamics block copolymers nanorods self-assembly
  • 相关文献

参考文献16

  • 1BATES F S,FREDRICKSON G H. Block copolymers-designer soft materials[J].Physics Today,1999,(02):32-38.
  • 2HAMLEY I W. Nanostructure fabrication using block copolymers[J].Nanotechnology,2003,(10):39-54.
  • 3ALEXANDRE M,DUBOIS P. Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials[J].Materials Science &Engineering R-Reports,2000,(1-2):1-63.
  • 4LOPES W A,JAEGER H M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds[J].Nature,2001,(6865):735-738.
  • 5SCHULTZ A J,HALL C K,GENZER J. Computer simulation of block copolymer/nanoparticle composites[J].Macromolecules,2005,(07):3007-3016.doi:10.1021/ma0496910.
  • 6LEE J Y,SHOU Z,BALAZS A C. Modeling the self-assembly of copolymer-nanoparticle mixtures confined between solid surfaces[J].Physical Review Letters,2003,(13):136103.doi:10.1103/PhysRevLett.91.136103.
  • 7BUXTON G A,BALAZS A C. Lattice spring model of filled polymers and nanocomposites[J].Journal of Chemical Physics,2002,(16):7649-7658.doi:10.1063/1.1509447.
  • 8BUXTON G A,BALAZS A C. Predicting the mechanical and electrical properties of nanocomposites formed from polymer blends and nanorods[J].Molecular Simulation,2004,(04):249-257.
  • 9ZHANG Q L,GUPTA S,EMRICK T. Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates[J].Journal of the American Chemical Society,2006,(12):3898-3899.doi:10.1021/ja058615p.
  • 10BENEUT K,CONSTANTIN D,DAVIDSON P. Magnetic nanorods confined in a lamellar lyotropic phase[J].Langmuir,2008,(15):8205-8209.doi:10.1021/la800387a.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部