期刊文献+

药物防治害虫的动力学行为

Kinetics of pest control with pesticide
下载PDF
导出
摘要 在农业生产中,农作物往往遭到虫灾的破坏,人们经常采用喷洒农药的方式来消灭害虫.在这里提出药物杀虫模型来研究害虫的动力学演化行为.在这个模型中害虫集团通过单体出生来增大,同时由于害虫的扩散行为,害虫集团会发生分解.害虫集团还会由于药物的作用而减小.在平均场理论的基础上通过解主方程的方法来研究害虫的动力学演化行为.结果发现:只有当初始药物量B0大于或者等于一定值Bc时,害虫才会以指数递减形式被完全消灭,否则害虫将会以指数递增形式增长,药物最终被消耗掉. The crops suffer from frequent pest damages in agriculture,and people often sprinkle pesticide to kill pests.The paper proposes the model of pests control with pesticide to study the kinetic evolution behaviors of pests.In the model,the pests aggregates grow by monomer birth,meanwhile the fragmentation of the pest aggregates occur due to the spread of pests.Due to pesticide,the pests aggregates also minish.The kinetic revolution behaviors of pests are investigated by the rate equation approach based on the mean-field theory.It is found that only the initial amount of the pesticide B0 is greater than or equal to Bc,the pests can be killed off exponentially.Otherwise,the pests will increase exponentially,and the pesticide will be used up.
出处 《浙江大学学报(理学版)》 CAS CSCD 2012年第2期159-161,共3页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(10875086 10775104)
关键词 动力学演化行为 药物杀虫 主方程 标度律 kinetic evolution behavior pest control with pesticide rate equation scaling law
  • 相关文献

参考文献1

二级参考文献14

  • 1Brenner Y Set al 1988 The Theory of Income and Wealth Distribution (New York: St. Martin's Press).
  • 2Anderson P W et al 1988 The Economy as an Evolving Complex System (Redwood, CA: Addison-Wesley).
  • 3Kauffman S A 1993 The Origin of Order: Self-Organization and Selection in Evolution (New York: Oxford University Press).
  • 4Zanette D H and Manrubia S C 1997 Phys. Rev. Lett. 79 523.
  • 5Marsili M and Zhang Y C 1998 Phys. Rev. Lett. 80 2741.
  • 6Ispolatov S, Krapivsky P L and Redner S 1998 Eur. Phys.J. B 2 267.
  • 7Leyvraz F and Redner S 2002 Phys. Rev. Lett. 88 068301.
  • 8Ben-Naim E and Krapivsky P L 2003 Phys. Rev. E 68 031104.
  • 9Ke J and Lin Z 2002 Phys. Rev. E 66 050102.
  • 10Ke J, LinZ and ZhuangY2003 Eur. Phys. JB 36 423.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部