摘要
对于一些二阶流动和麦克斯韦流体,由于圆柱沿着对称轴不断加速而产生的速度场的变化,在一些适应的边值问题的特征函数条件下,可以描述为Fourier-Bessel级数的形式。这样的处理方式可以满足包括偏微分方程和所有外加的初始和边界条件。对于α或者λ→0,他们都将趋向于牛顿流体的情形。本文最后,对应这种通过圆柱的流动的解,几张图给出了对于不同的值和材料常数时的情形。
The velocity fields corresponding to some flows of second grade and Maxwell fluids,introduced by a circular cylinder subject to a constantly accelerating translation along its symmetry axis,are presented as Fourier-Bessel series in terms of the eigenfunctions of some suitable boundary value problems.These solutions satisfy both the associate partial differential equations and all imposed initial and boundary conditions.For α or λ→0 they are going to those for a Newtonian fluid.Finally,for comparison,some diagrams corresponding to the solutions for the flow through a circular cylinder are presented for different values of t and of the material constants.
出处
《内蒙古石油化工》
CAS
2012年第7期10-13,共4页
Inner Mongolia Petrochemical Industry
关键词
库特运动
二阶流体
麦克斯韦流体
速度场
切面张力
不断加速的圆柱体
Couette flows,second grade fluid,Maxwell fluid,velocity field,tangential tensions,constantly accelerating cylinder.