期刊文献+

基于跳扩散过程的奇异期权定价

Pricing of exotic option based on jump-diffusion process
下载PDF
导出
摘要 利用风险中性原理研究标的股价服从跳扩散过程的奇异期权定价问题,推导出标的资产价格服从跳扩散过程的上限型权证及局部支付型权证这两种奇异期权的定价公式,并给出两个实例. The pricing of exotic option when the underlying assets following jump-diffusion process were mainly studied.By using the risk neutral valuation principle,the pricing formula of capped calls and payoff segment calls were obtained when the underlying stock price was depicted by jump-diffusion process.
出处 《湖北大学学报(自然科学版)》 CAS 2012年第4期438-443,共6页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(70701017) 河南省科技计划(112400450212) 河南省教育厅自然科学研究基金(2011A110002)资助
关键词 定价 上限型权证 局部支付型权证 跳扩散过程 pricing capped calls payoff segment calls jump-diffusion process
  • 相关文献

参考文献6

  • 1刘宣会,徐成贤.基于跳跃-扩散过程的一类亚式期权定价[J].系统工程学报,2008,23(2):142-147. 被引量:21
  • 2Leland H E. Option pricing and replication with transaction costs[J].Journal of Finance,1985,(40):1283-1301.
  • 3Markowitz H M. Portfolio selection[J].Journal of Finance,1952,(01):77-91.
  • 4黄志远.随机分析学基础[M]北京:科学出版社,2001.
  • 5Merton R G. Option pricing when underlying stock returns are discontinuous[J].Journal of Financial Economics,1976,(03):125-144.
  • 6陈松男.金融工程学[M]上海:复旦大学出版社,2002.

二级参考文献12

  • 1Cox J C, Ross S A, Rubinstein M. Option pricing: A simple approach[ J ]. Journal of Finance Economics, 1979, 7 (2) : 229-263.
  • 2Barraquand J P. Pricing of American path-dependent contingent claims[J]. Mathematical Finance, 1996, 3 (1) : 17-51.
  • 3Shreve S, Vecer J. Options on a trade account: Vacation calls, vacation puts and passport options[J]. Finance and Stochastics, 2000, 8(4) : 255-274.
  • 4Hoogland J. Neumann D. Local scale Invariance and contingent claim pricing[ J]. International Journal of Theoretical and Applied Finance, 2001, 4(1): 1-21.
  • 5Long J. The numeraire portfolio[J]. Journal of Financial Economics, 1990, 26( 1 ) : 29-69.
  • 6Merton R. An intertemporal capital asset pricing model[ J]. Econometrica, 1973, 10(5) : 467-888.
  • 7Jeanblance P, Pontier M. Optimal portfolio for a small investor in a market model with discontinuous prices [ J ]. Appl. Math. Optim, 1990, 9(5) : 287-310.
  • 8Mercurio F. Option pricing for jump diffusion. Approximations and their imterpreation[ J]. Mathematical Finance, 1993, 9 (6) : 191-20.
  • 9Musiela M, Rutkowski M. Martingale Methods in Financial Modeling[M]. New York: Springer-Verlag, 1998.
  • 10Kallianpur G, Xiong J. Asset pricing with stochastic volatility[J]. Appl. Math. Optim., 2001, 12(8) : 47-62.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部