期刊文献+

基于血管匹配的三维超声与CT图像的配准方法

Three-dimensional Registration of Ultrasound and CT based on Vessels
下载PDF
导出
摘要 提出一种基于血管匹配的三维超声与CT图像配准的新方法。首先,基于水平集方法自动分割出CT图像中的血管;其次,由于超声图像中的声影与血管均属于低回声区域,我们结合声影形成的物理原理及图像纹理特性,自动检测出声影区域,以提高配准的鲁棒性;最后,采用进化算法,将CT图像中分割出的血管与超声图像中低回声区域进行匹配。在肝脏体模和临床脾脏数据上进行了实验验证,自动配准的成功率在95%以上,平均目标配准误差在2 mm以内,实验结果验证了本方法的可行性。 In this paper,we presented a framework to rigidly register a pre-operative computed tomography(CT) scan to the intra-operative ultrasound(US) volume.Our main focus was on removing the US shadow artifacts and deriving an appropriate similarity measure based on vessels.The proposed shadow removal method was based on the physical principle of US shadow formation and the observation that a number of shadows happen in larger areas and contain more noises than the vessel parts.Due to the fact that the vessels in the US images commonly occur in regions with relatively low intensity,the proposed registration method performed the correlation between the segmented vessels from CT images and low intensity regions in US images.We applied this method to a phantom liver and a real spleen.The success rate of registration is more than 95%,and the average target registration error is less than 2 mm,which demonstrates the feasibility of our method.
出处 《生物医学工程研究》 2012年第2期65-69,共5页 Journal Of Biomedical Engineering Research
基金 国家自然科学基金资助项目(61031003 61101026)
关键词 多模态图像配准 三维超声 CT 血管分割 进化算法 Multi-modality registration 3D ultrasound CT Vessel segmentation Evolutionary algorithm
  • 相关文献

参考文献11

  • 1Milko S,Melvaer E,Samset E. Evaluation of bivariate correlation ratio similarity metric for rigid registration of US/MR images of the liver[J].International Journal of Computer Assisted Radiology and Surgery,2009,(02):147-155.
  • 2Wein W,Brunke s,Khamene A. Automatic CT-ultrasound registration for diagnostic imaging and image guided intervention[J].Medical Image Analysis,2008,(05):577-585.doi:10.1016/j.media.2008.06.006.
  • 3Leroy A,Mozer P,Payan Y. Rigid registration of freehand 3d ultrasound and CT-scan kidney images[A].2004.837-844.
  • 4Nigris D De,Mercier L,Maestro R Del. Hierarchical multimodal image registration based on adaptive local mutual information[A].2010.643-651.
  • 5钱慧,胡志忠.基于粗配准和混合互信息的医学图像配准算法[J].生物医学工程研究,2007,26(3):266-270. 被引量:5
  • 6Porter B C,Rubens D J,Strang J G. Three-dimensional registration and fusion of ultrasound and MRI using major vessels as fiducial markers[J].IEEE transactions on Medical Imagng,2001,(04):354-359.
  • 7Penney G P,Blackall I M,Hamady M S. Registration of freehand 3d ultrasound and magnetic resonance liver images[J].Medical Image Analysis,2004,(01):81-91.
  • 8Charles X.B.Yan,Benoit Goulet,Julie Pelletier. Towards accurate,robust and practical ultrasound-CT registration of vertebrae for image-guided spine surgery[J].International Journal of Computer Assisted Radiology and Surgery,2011,(04):523-537.
  • 9Yushkevich P A,Piven J,Hazlett H C. User-guided 3d active contour segmentation of anatomical structures:siguificantly improved efficiency and reliability[J].Neuroimage,2006,(03):1126-1128.
  • 10Styner M,Gerig G. Evaluation of 2d/3d bias correction with 1 +les-optimization[J].Image Science Lab,1997.179.

二级参考文献5

  • 1[1]MA B,HERO A,GORMAA J.Image registration with minimal spanning tree algorithm[A].Proceedingd of the IEEE International Conference on Image Processing[C].Vancouver BC,Canada,2000.
  • 2[2]CAPEK M,MROZ L,WEGENKITL R.Robust and fast medical registration of 3D-multimodality data sets[A].Proceedings of Medical and Biological Engineering and Computing[C].2001,515-518.
  • 3[5]RENYI.Probability Theory[M].North Holland,1970.
  • 4[6]Goldberg D E.Genetic algorithms in search,optimizations and machine learning[M].Morgan Kaufmann,1989.
  • 5周永新,罗述谦.一种人机交互式快速脑图像配准系统[J].北京生物医学工程,2002,21(1):11-14. 被引量:7

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部