摘要
研究素GPI-环中心闭包的本原性,获得的主要结果是:若S=RC是素环R的中心闭包,则S是GPI-环,当且仅当S有一个极小右理想eS(因此S是本原的),且eSe是C上有限维可除代数,其中e是S的幂等元.
The primitivity of central colsure on prime GPI-ring was studied.Let S=RCbe the central colsure of prime ring R.Then S was GPI-ring if and if Scontained a minial right eS(hence S was primitive)and eSe was a finite dimensional division algebra over C where e was an idempotent element of S.
出处
《湖北大学学报(自然科学版)》
CAS
2012年第3期320-323,共4页
Journal of Hubei University:Natural Science
关键词
中心闭包
GPI-环
素环
本原环
central closure
GPI-ring
prime ring
primitive ring