期刊文献+

Microstructure of nano precursors of La-Mg hydrogen storage alloy synthesized by sol-gel technology at different pH values 被引量:3

Microstructure of nano precursors of La-Mg hydrogen storage alloy synthesized by sol-gel technology at different pH values
下载PDF
导出
摘要 Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0. Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0.
出处 《Rare Metals》 SCIE EI CAS CSCD 2012年第5期466-469,共4页 稀有金属(英文版)
基金 supported by the Open Foundation of Key Laboratory of the Ministry of Educationof Nonferrous Metal Alloys and Processes(No.EKL09002) The Ph.D.Fund Project of Lanzhou University of Science and Technology(No.BS01200904)
关键词 pH value MICROSTRUCTURE nano precursors sol-gel technology pH value microstructure nano precursors sol-gel technology
  • 相关文献

参考文献10

二级参考文献57

共引文献45

同被引文献7

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部