期刊文献+

SF网络上的SIR模型

Analysis of SIR model on SF networks
下载PDF
导出
摘要 为促进复杂网络和传染病动力学在传染病研究中的应用,分析了SF(无标度)网络的拓扑结构对传染病传播的影响,深入讨论了SIR(易感者-染病者-康复者)模型的传播规律并得到基本再生数R0.为了进一步控制疾病的传播,采取目标免疫策略,得到了有限的基本再生数Rt0. In order to study the application of complex network and infectious diseases dynamics in the research of diseases,we investigate the effects of scale-free networks' topological structure on the spread of diseases,analyze the SIR(susceptible-infected-recovered) epidemic model on scale-free networks and get the basic reproduction number R0.To control the diseases,the target immunization scheme is taken and the finite basic reproduction number R0t is obtained.
作者 郭家锋 刘霞
出处 《山东理工大学学报(自然科学版)》 CAS 2011年第5期59-62,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 SIR 无标度网络 目标免疫 SIR scale-free networks target immunization
  • 相关文献

参考文献10

  • 1陈军杰.若干具有非线性传染力的传染病模型的稳定性分析[J].生物数学学报,2005,20(3):286-296. 被引量:26
  • 2Cohen R,Ben-Avraham D,Havlin S.Efficient immunizationstrategies for computer networks and populationsPhysical Review Letters,2003.
  • 3Watts D J,Strogatz S H.Collective dynamics of small-world networksNature,1998.
  • 4Barabási A L,Albert R.Emergence of scaling in random networksScience,1999.
  • 5Pastor-Satorras R,Vespignani A.Epidem ic dynam ics and endem ic states in complex networksPhysical Review E Statistical Nonlinear and Soft Matter Physics,2001.
  • 6Pastor-Satorras R,Vespignani A.Epidemic dynamics in finite size scale-free networksPhysical Review E Statistical Nonlinear and Soft Matter Physics,2002.
  • 7R. Pastor-Satorras,A. Vespignani.Immunization of complex networksPhysical Review E Statistical Nonlinear and Soft Matter Physics,2001.
  • 8Barabási A L,Albert R,Jeong H.Mean-field theory for scale-free random networksPhysica A Statistical Mechanics and its Applications,1999.
  • 9Anderson,R. M. and May,R. M.Infectious Disease of Humans and Control, Oxford Unly,1991.
  • 10Korobeinik A.Lyapunov function and global properties for SEIR and SEIS epidemic modelsMathematical Medicine and Biology,2004.

二级参考文献10

  • 1Moghadas S M. Two core group models for sexual transmission of disease[J]. Ecological Modelling, 2002 ,148 (1) : 15-26.
  • 2Hyman J M, Li J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations [J]. Math Biosci, 2000 , 167(1): 65-86.
  • 3Ma Z, Liu J P, Li J. Stability analysis for differential infectivity epidemic models [J]. Nonlinear Analysis:Real World Applications, 2003 , 4(5): 841-856.
  • 4Moreira H N, Wang Y. Global stability in an S→I→R→Imodel [J]. SIAM Rev, 1997, 39(3): 496 - 502.
  • 5Zhang X, Chen L S. The periodic solution of a class of epidemic models [J]. Computers and Mathematics with applications, 1999 , 38(3-4): 61-71.
  • 6Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford: Oxford University Press, 1991.
  • 7Moghadas S M, Gumel A B. Global stability of a two-stage epidemic model with generalized non-linear incidence [J]. Mathematics and computers in simulation, 2002 , 60(1-2): 107-118.
  • 8尚莉.易感性不同的病毒携带者流行病在开放系统的随机模型[J].兰州大学学报(自然科学版),2001,37(1):19-22. 被引量:3
  • 9陈军杰,张南松.具有常恢复率的艾滋病梯度传染模型[J].应用数学学报,2002,25(3):538-546. 被引量:13
  • 10San-ling,Zhi-enMa,ZhenJin.Persistence and Periodic Solution on a Nonautonomous SIS Model with Delays[J].Acta Mathematicae Applicatae Sinica,2003,19(1):167-176. 被引量:5

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部