摘要
The two-phase replication-based routing has great prospects for Delay Tolerant Mobile Sensor Network (DTMSN) with its advantage of high message delivery ratio, but the blind spraying and the low efficiency forwarding algorithm directly influences the overall network performance. Considering the characteristic of the constrained energy and storage resources of sensors, we propose a novel two-phase multi-replica routing for DTMSN, called Energy-Aware Sociality-Based Spray and Search Routing (ESR), which implements the quota-style message replication mechanism by utilizing the energy and speed information of sensors. In addition, based on the difference of history encounters, a sociality metric is defined to improve the forwarding efficiency in search phase. Simulation experiments show that ESR can reduce the message delay and improve the resource utilization while maximizing the message delivery ratio compared with the exiting popular two-phase routing protocols.
The two-phase replication-based routing has great prospects for Delay Tolerant Mobile Sensor Network (DTMSN) with its advantage of high message delivery ratio, but the blind spraying and the low efficiency forwarding algorithm directly influences the overall network performance. Considering the characteristic of the constrained energy and storage resources of sensors, we propose a novel two-phase multi-replica routing for DTMSN, called Energy-Aware Sociality-Based Spray and Search Routing (ESR), which implements the quota-style message replication mechanism by utilizing the energy and speed information of sensors. In addition, based on the difference of history encounters, a sociality metric is defined to improve the forwarding efficiency in search phase. Simulation experiments show that ESR can reduce the message delay and improve the resource utilization while maximizing the message delivery ratio compared with the exiting popular two-phase routing protocols.
基金
supported by National Natural Science Foundation of China under Grant No.60802016, 60972010 and No.61100217
by China Fundamental Research Funds for the Central Universities under Grant No. 2011JBM002,2011YJS017