期刊文献+

分形图像编码的矩阵表示和收敛性分析 被引量:1

Matrix Representation and Convergence Analysis of Fractal Image Encoding
下载PDF
导出
摘要 分形解码迭代过程的收敛是保证解码正确实现的条件 ,要研究迭代过程的收敛性首先要把分形编码中的映射用矩阵来表示出来 .本文针对Jacqain的分块算法给出了数字灰度图像分形编码的矩阵表示 。 The convergence of the iterative process ensures the validity of fractal decoding. To study the convergence of decoding process, the transform in fractal encoding must first be presented with matrix. Matrix representation of fractal encoding of digital grey level image is put forward and a method to compute spectral radius of the matrix based on the theory of directed graph is also presented.
作者 俞璐 吴乐南
出处 《电子学报》 EI CAS CSCD 北大核心 2004年第7期1103-1107,共5页 Acta Electronica Sinica
关键词 分形图像编码 收敛性 有向图 强连通分量 Algorithms Convergence of numerical methods Fractals Iterative methods Matrix algebra
  • 相关文献

参考文献6

  • 1Bernd Hiirtgen,Thomas Hain.On the convergence of fractal transforms[A].Proc of 1994 IEEE Inter Conf on Acoustics,Speech,and Signal Processing[C].Adelaide,Australia:IEEE 1994.561-564.
  • 2Bernd Hurtgen.Contractivity of fractal transforms for image coding[J].Electronics Letters 30th September 1993,29(20):1794-1750.
  • 3Bernd Hiirtgen,Stephan F Simon.On the problem of convergence in fractal coding schemes[A].Proc of 1994 First IEEE Inter Conf on Image Processing[C].Austin,Texas,USA:IEEE 1994.13-16.
  • 4Kominek J.Convergence of fractal encoded images[A].Proc of 1995 IEEE Data Compression Conference[C].U.tah,USA:IEEE,1995.242-251.
  • 5Z Baharav,D Malah.Hierarchical interpretation of fractal image coding and its applications[A].Proc of 1993 IEEE Inter.Conf.on Digital Signal Processing[C].Cyprus:IEEE,1993.190-195.
  • 6Alfred V Aho,John E Hopcroft,Jeffrey D Ullman.The Design and Aanlysis of Computer Algorithms[M].USA:Addison-Wesley Publishing Company,1976.189-195.

同被引文献11

  • 1王兴元,于雪晶.基于分形可视化方法研究广义3x+1函数的动力学特性[J].自然科学进展,2007,17(4):529-535. 被引量:2
  • 21 Alves J F, Graca M M, Dias M E S, et al. A linear algebra approach to the conjecture of Collatz[ J]. Linear Algebra and Its Aoolications, 2005,394( 1 ) : 277 - 289.
  • 3Lagarias J C. The 3x + l problem and its generalizafions[J]. American MathematicaJ Monthly, 1985,92( 1 ) :3 - 23.
  • 4John Simons, Benne de Weger. Theoretical and computational bounds for m-cycles of the 3n + 1 problem[J]. Acta Adth, 2005,117(1) :51 - 70.
  • 5Mandelbrot B B. The Fractal Geometry of Nature [ M ]. San Fransisco: Freeman W H, 1982.1 - 122.
  • 6Pe J L.The 3x + 1 fractal[J].Computers and graphics,2004, 25(3) :431 - 435.
  • 7Dumont J P, Reiter C A. Visualizing generalized 3 x + 1 function dynamics[J]. Compiaters and Graphics, 2001,25 (5) : 553 - 595.
  • 8Yunliang Long, Edward K N Yung. Kuhn Algorithm: Ullla- convenient Solver to Complex Polynomial and Transcendental Equations without Initial Value Selection [ J ]. International Journal of RF and Microwave Computer-Aided Engineering, 2002,12(6) :540- 547.
  • 9刘帅,王钲旋.一个3x+1近似推广函数的不动点与分形图像[J].计算机辅助设计与图形学学报,2009,21(12):1740-1744. 被引量:2
  • 10李晋江,张彩明,范辉,原达.基于分形的图像修复算法[J].电子学报,2010,38(10):2430-2435. 被引量:12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部