期刊文献+

锥度量空间中3个自映射的公共不动点定理

On Common Fixed Point Theorems for Three Self-mappings in Cone Metric Spaces
下载PDF
导出
摘要 在锥度量空间中引进了一类广义压缩条件,证明了在完备的锥度量空间中3个自映射叠合点的存在唯一性,最后给出了该叠合点是3个自映射公共不动点的条件. In this paper,a new generalized contractive condition has been introduced in cone metric space.The existence and uniqueness of point of coincidence for three self-mappings have been proved in complete cone metric space.Finally,it obtains a condition that the point of coincidence is the common fixed point for the three self-mappings.These results extend some of the most general common fixed point theorems for two mappings in cone metric spaces.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第12期33-36,共4页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 S-T-序列 叠合点 公共不动点 锥度量空间 S-T-sequence point of coincidence common fixed point cone metric spaces
  • 相关文献

参考文献7

  • 1HUANG Long-guang,ZHANG Xian. Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings[J].Journal of Mathematical Analysis and Applications,2007,(03):1467-1475.
  • 2ARSHAD M,AZAM A,VETRO P. Some Common Fixed Point Results in Cone Metric Spaces[J].Fixed Point Theory and Applications,2009.11.
  • 3DEMIRER H,(O)ZT(U)RK M,BASARIR M. On Some Maps with P and Q Properties in Non-Normal Cone Metric Spcaces[J].International Mathematical Forum,2011,(08):381-387.
  • 4AZAM A,ARSHAD M,BEG I. Common Fixed Points of Two Maps in Cone Metric Spaces[J].Ren-diconti del Circolo Matematico di Palermo,2008.433-441.
  • 5ABBAS M,RHOSDES B E,NAZIR T. Common Fixed Points of Generalized Contractive Multivalued Mappings in Cone Metric Spaces[J].Mathematical Communications,2009.365-378.
  • 6周乐,陈超,沈立成.锥度量空间中两个集值映射的公共不动点定理(英文)[J].西南师范大学学报(自然科学版),2011,36(5):48-51. 被引量:1
  • 7刘文军,孟京华,邓中书.渐近拟非扩张型映象的修正的Ishikawa Riech-Takahashi迭代序列的强收敛性[J].江西师范大学学报(自然科学版),2011,35(3):297-301. 被引量:2

二级参考文献22

  • 1曾六川.Banach空间中Reich-Takahashi迭代法的强收敛定理[J].数学学报(中文版),2005,48(3):417-426. 被引量:6
  • 2邓磊.G-凸空间中具有G_θ-优化映象的广义博弈的平衡存在定理(英文)[J].西南师范大学学报(自然科学版),2006,31(2):1-8. 被引量:6
  • 3Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc Amer Math Soc, 1972, 35(1): 171-174.
  • 4Kirk W A. Fixed point theorem for non-Lipschitzian mappings of asymptotically nonexpansive type [J]. Israel J Math, 1974, 17(4): 339-346.
  • 5Zeng Luchuan. A note on approximating fixed points of nonex- pansive mapping by the Ishikawa iterative processs [J]. J Math Anal Appl, 1998, 226(1): 245-250.
  • 6Chang Shishen, Cho Y J, Kim J K, et al. Iterative approximation of fixed points for asymptotically nonexpansive types mappings in Banach space [J]. Pan-American Mathematical Journal, 2001, 11(3): 53-63.
  • 7Sun Zhaohong, He Chang. Iterative approximation of fixed points for asymptotically nonexpansive types mappings with er- ror member [J]. Acta Mathematica Sinica, chinese series, 2004, 47(4): 811-818.
  • 8Xu Hongkun. Inequalities in Banach space with applications [J]. Nonlinear Anal TMA, 1991, 16(12): 1127-1138.
  • 9Chang Shishen. Some problems and results in the study of nonlinear analysis [J]. Nonlinear Anal TMA, 1997, 30(7): 4197- 4208.
  • 10NADLER S B. Multi-valued Contraction Mappings [J]. Pacific Journal of Mathematics, 1969, 30: 415-487.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部