期刊文献+

基于SIFT特征匹配的电力设备图像变化参数识别 被引量:6

Image Variation Parameter Recognition of Electrical Power Equipment Based on SIFT Feature Matching
下载PDF
导出
摘要 在变电站视频监视系统中,可通过视频巡检来及时发现某些异常状态,以免产生故障。图像的某些参数的改变是判别图像状态改变的重要依据,提出了一种基于SIFT,OTSU和RANSAC相结合的特征匹配的电力设备图像变化参数识别算法。先对样本资料图像和监测图像进行SIFT特征匹配,与OTSU相结合消除干扰匹配特征点,再通过RANSAC随机抽样一致性算法消除错误匹配特征点,根据匹配结果识别电力设备图像变化角度和缩放比例这2个重要参数。仿真实验表明,此算法简单易行,精度高,可用于电力铁塔倾斜角度和指针式仪表指针旋转角度的识别,也可用于视频巡检中缩放系数的识别。 In video monitoring system of substation,in-process video inspection is used to detect abnormalities in timely so as to avoid failures.Changes in certain parameters of the image constitute an important basis in identifying the changes in image status.A power installation image change parameter identification algorithm based on SIFT,OTSU and RANSAC feature matching was presented.Firstly,a SIFT feature matching was performed on the sample image and monitoring image.Then the interference matching feature points were eliminated in combination with OTSU,and the RANSAC random sampling agreement algorithm was used to eliminate the wrong matching feature point.Finally,two important parameters including the variation angle and zoom coefficient of power installation image were identified based on the matching result.As is proved in the simulation test,this algorithm features simplicity and high precision and it can be used in recognizing the electric power tower inclination angle and meterneedle rotation angle.Meanwhile it can be used in recognizing the zoom coefficient in video inspection as well.
作者 余萍 董保国
出处 《中国电力》 CSCD 北大核心 2012年第11期60-64,共5页 Electric Power
关键词 电力设备 SIFT特征匹配 样本资料图像 设备监测图像 变化角度 缩放比例 electrical power equipment SIFT feature match sample image equipment monitoring image variation angle zoom coefficient
  • 相关文献

参考文献11

二级参考文献65

共引文献126

同被引文献64

  • 1周星炜,王占斌,袁一方,穆平安,陈林.基于光纤Sagnac干涉仪的旋转角度测量系统[J].传感器技术,2005,24(9):53-55. 被引量:7
  • 2李向东,鲁守银,王宏,管瑞清,安东,厉秉强.一种智能巡检机器人的体系结构分析与设计[J].机器人,2005,27(6):502-506. 被引量:40
  • 3鲁守银,钱庆林,张斌,王明瑞,李向东,王宏.变电站设备巡检机器人的研制[J].电力系统自动化,2006,30(13):94-98. 被引量:137
  • 4David G Lowe. Distinctive image features from scale-invariant keypoints [J]. International Journal on Computer Vision(S1573-1405), 2004, 60(2): 91-110.
  • 5ZHANG Miaohui, HOU Yandong, HU Zhentao. Accurate object tracking based on homography matrix [C]// International Conference on Computer Science and Service System, Nanjing, China, Aug 11-13, 2012: 2310-2312.
  • 6Stefan Leutenegger, Margarita Chli, Roland Siegwart. BRISK: Binary Robust lnvariant Scalable Keypoints [C]// Proceedings of the IEEE International Conference on ComputerVision (ICCV), Barcelona, Spain, Nov 6-13, 2011: 2548-2555.
  • 7Lee Hsuan, Liu Chih-Yin, Lin Chih-Jui, et al. Implementation of real-time object recognition system for home-service robot by integrating SURF and BRISK [C]// Conference Proceedings - 2014 International Conference on System Science and Engineering, ICSSE, Shanghai, China, July 11-13, 2014: 273-278.
  • 8牛津图像库.Oxford.VisualGeometryGroup-AffineCovariantRegionsDataset[EB/OL].2014-02-10.
  • 9图像处理标准图像库.http://www.datatang.com/datares/go.aspx?dataid=604557[EB/OL].2014.06-05.
  • 10OTSU N. A threshold selection method from gray-level histo-gram [J]. IEEE Transaction on Systems Man and Cybernetic(S1083-4427), 1979, 9(1): 62-66.

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部