摘要
采用机理方法、线性拟合方法和一阶TSK模糊神经网络算法分别对催化重整装置的主要产品质量指标——芳烃收率建立软测量模型,并在国内某大型工业级催化重整装置上进行在线应用。研究结果表明:进料负荷变化不大时3,种模型的在线预测趋势均能较好地跟踪芳烃收率的实际变化;当进料负荷变化较大时,3种模型的预测偏差分别为0.24wt%、0.67wt%和0.95wt%,且只有机理模型能如实地反映芳烃收率的变化。这说明机理模型具有预测精度高及外推性能好等优势,而且机理模型对样本数目要求最少,其预测精度基本不受样本数的影响。
Basing on mechanism method,linear regression method and first-order TSK fuzzy neural network algorithm,three soft-sensing models for aromatics yield in catalytic reforming process were presented respectively.Their domestic application in a large-scale catalytic reforming process shows that at little change in the feed charge,three models can track the actual change of aromatics yield;and at big change in the feed charge,their average deviations stand at 0.24wt%,0.67wt% and 0.95wt% respectively,and only mechanism model can reflect the actual change of aromatics yield.This means that mechanism model which asking for least samples can outperform others in forecast precision.
出处
《化工自动化及仪表》
CAS
2012年第7期932-935,共4页
Control and Instruments in Chemical Industry
关键词
软测量
芳烃收率
机理模型
预测精度
数据驱动模型
soft-sensing technology,aromatics yield,mechanism model,forecast precision,data-driven model