期刊文献+

基于Lebesgue常数最小的最优保形重心有理Hermite插值

Shape Preserving of Barycentric Rational Hermite Interpolation Basis on the Lebesgue Constant Minimizing
下载PDF
导出
摘要 和传统的有理Hermite插值方法相比,重心形式的有理Hermite插值具有许多优点,如计算量小、具有好的数值稳定性、没有极点及不可达点等。进一步研究最优保形重心有理Hermite插值方法。以插值权为决策变量、以Lebesgue常数最小为目标函数、以保形、没有极点及不可达点等为约束条件,建立优化模型求解最优插值权。给出的数值实例表明新方法的有效性。 The barycentric rational Hermite interpolation possess various advantages in comparison with classical rational Hermite interpolants,for example,barycentric rational Hermite interpolants have small amount of calculation,good numerical stability,no poles and no unattainable points,regardless of the distribution of the points.The new shape preserving barycentric rational Hermite interpolation is presented,which with proper weights have no poles and no unattainable points.It is the key issue how to choose weights so that the interpolant with the minimum Lebesgue constant is obtained.The optimal interpolation weights are obtained based on an optimization model.Numerical examples are given to show the effectiveness of the new method.
作者 乔洁 赵前进
出处 《安徽理工大学学报(自然科学版)》 CAS 2012年第3期17-20,共4页 Journal of Anhui University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(60973050 30570431 60873144) 安徽省教育厅自然科学基金资助项目(KJ2009A50 KJ2007B173) 安徽省优秀人才基金资助项目 教育部新世纪优秀人才支持计划资助项目(NCET-06-0555) 国家863高技术研究发展计划基金资助项目(2006AA01Z104)
关键词 重心有理Hermite插值 LEBESGUE常数 保形 Barycentric rational Hermite interpolation Lebesgue constant weights shape preserving
  • 相关文献

参考文献9

  • 1MEIJERING E. A chronology of interpolation:from ancient astronomy to modern signal and image processing[J].IEEE,2002,(03):319-342.
  • 2KLEIN G,BERRUT J P. Linear rational finite differences from derivatives of barycentric rational interpolants[J].SIAM Journal on Numerical Analysis,2012,(02):643-656.
  • 3JESUS M C. Weighted interpolation for equidistant nodes[J].Numerical Algorithms,2010,(2-3):223-232.
  • 4WEBB M,TREFETHEN L N,GONNET P. Stability of barycentric interpolation formulas[J].Numerical Analysis,2010,(04):547-556.
  • 5ZHAO Q J,HAO Y P,YIN Z X. Best Barycentric Rational Hermite Interpolation[A].2010.417-419.
  • 6BERRUT J P. Lebesgue Constant Minimizing Linear Rational Interpolation of continuous Functions over the Interval[J].Computers and Mathematics with Applications,1997,(06):77-86.
  • 7SCHNEIDER C,WERNER W. Hermite Interpolation:The Barycentric Approach[J].Computing-Special issue on archives for informatics and numerical computation,1991,(01):35-51.
  • 8NGUYEN H T,CUYT A,CELIS O S. Comonotone and coconvex rational interpolation and approximation[J].Numerical Algorithms,2011,(01):1-21.
  • 9NGUYEN H T,CUYT A,CELIS O S. Shape Control in Multivariate Barycentric Rational Interpolation[A].2010.543-548.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部