期刊文献+

具有Fréchet可微范数的实一致凸Banach空间中可数严格伪压缩映射族的弱收敛定理 被引量:1

Weak Convergence Theorems for a Countable Family of Strict Pseudocontraction Mappings in a Uniformly Convex Banach Space with the Fréchet Differentiable Norm
下载PDF
导出
摘要 为了研究在具有Fréchet可微范数的实一致凸Banach空间中的可数的严格伪压缩映射族Mann型迭代方案的收敛性,利用Marino-Xu,Zhou,Osilike-Udomene,Zhang-Guo的结论以及其它相关的结论,在已有结论的基础上,将Chidume-Shahzad的某些结论推广到具有Fréchet可微范数的实一致凸Banach空间的无限严格伪压缩映射族的情形下,并给出了在具有Fréchet可微范数的实一致凸Banach空间中的可数严格伪压缩映射族的Mann型迭代方案弱收敛性的证明。 In this paper,in order to investigate the convergences of Mann-type iterative scheme for a countable family of strict pseudocontraction mappings in a uniformly convex Banach space with the Fréchet differentiable norm,we used the results obtained by Marino-Xu,Zhou,Osilike-Udomene,Zhang-Guo and the corresponding results to extend some conclusions obtained by Chidume-Shahzad to the real uniformly convex Banach space with the Fréchet differentiable norm under the countable strictly pseudocontraction mappings.And the proof of the weak convergences of Mann-type iterative scheme for a countable family of strict pseudocontraction mappings in this Banach space with the Fréchet differentiable norm was given.
作者 王纯 潘思明
出处 《成都信息工程学院学报》 2011年第4期366-372,共7页 Journal of Chengdu University of Information Technology
关键词 应用数学 非线性分析 公共不动点 收敛定理 λ-严格伪压缩映射 MANN迭代 一致凸BANACH空间 applied mathematics nonlinear functional analysis common fixed points convergence theorem strict pseudocontractions Mann iteration uniformly convex Banach spaces
  • 相关文献

参考文献14

  • 1M O Osilike,A Udomene.Demiclosedness principle and convergence theorems for strictly pseudocontractivemappings of Browder-Petryshyn typeJournal of Mathematical Analysis and Applications,2010.
  • 2Y Zhang,Y Guo.Weak convergence theorems of three iterative methods for strictly pseudocontractive map-pings of Browder-Petryshyn typeFixed Point Theory Appl,2008.
  • 3H Zhou.Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions inBanach spacesNonlinear Analysis,2008.
  • 4K Aoyama,Y Kimura,W Takahashi.Approximation of common fixed points of a countable family of nonex-pansive mappings in a Banach spaceNonlinear Analysis,2007.
  • 5R P Agarwal,D O’’Regan,D R Sahu.Fixed Point Theory for Lipschitzian-type Mappings with Applications,2009.
  • 6Mann W R.Mean value methods in iterationProceedings of the American Mathematical Society,1953.
  • 7Ishikawa S.Fixed point by a new iteration method,1974.
  • 8Browder F E.Nonlinear operators and nonlinear equations of evolution in Banach spaces,1976.
  • 9Tan K K;Xu H K.Fixed point iteration processes for asymptotically nonexpansive mappings,1994.
  • 10Reich S.Constructive techniques for accretive and monotone operators,1979.

共引文献2

同被引文献9

  • 1Browder F E.Nonlinear operators and nonlinear equations of evolution in Banach spaces,1976.
  • 2H Zhou.Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions inBanach spacesNonlinear Analysis,2008.
  • 3K Aoyama,Y Kimura,W Takahashi.Approximation of common fixed points of a countable family of nonex-pansive mappings in a Banach spaceNonlinear Analysis,2007.
  • 4R P Agarwal,D O’’Regan,D R Sahu.Fixed Point Theory for Lipschitzian-type Mappings with Applications,2009.
  • 5BOONCHARI D,,SAEJUNG S.Weak and strong convergence theorems of ani mplicit iterationfor a countable family ofcontinuous pseudocontractive mappingsJournal of Computational and Applied Mathematics,2009.
  • 6Boonchari D,Saejung S.Construction of Common Fixed Points of aCountable Family of Demicontractive Mappings in Arbitrary BanachSpacesApplied Mathematics and Computation,2010.
  • 7Browder F E,Petryshyn W V.Construction of fixed points of nonlinear mappings in Hilbert spaceJournal of Mathematical,1967.
  • 8C E Chidume,N Shahzad.Weak convergence theorems for a finite family of strict pseudocontractionsNonlinear Analysis,2010.
  • 9Ceng L C,Al-Homidan S,Ansari Q H,Yao J C.An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappingsJournal of Computational and Applied Mathematics,2009.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部