期刊文献+

广义混合平衡问题和不动点问题的公共元的混杂算法 被引量:1

Hybrid Algorithms of Common Elements for Generalized Mixed Equilibrium Problems and Fixed Point Problems
下载PDF
导出
摘要 为了在Banach空间中寻求广义混合平衡问题与有限个依中间意义的渐进非扩张映像族不动点问题的公共元,利用度量投影设计了一种新的混杂算法,证明了此算法生成的序列强收敛于这两个问题的公共元,改进和推广了Dehghan和Kamraksa的主要结果. In order to find common elements for the set of solutions of a generalized mixed equilibrium problem and the set of common fixed points of a finite family of asymptotically nonexpansive mapping in the intermediate sense in a Banach space,A hybrid algorithm is constructed by using metric projection.It is proved that the sequences generated by the algorithm converge strongly to the common elements.The results presented in this paper improve and extend the main results in Dehghan and Kamraksa.
作者 朱寿国
出处 《成都信息工程学院学报》 2011年第4期388-393,共6页 Journal of Chengdu University of Information Technology
关键词 应用数学 非线性分析 混杂算法 广义混合平衡问题 渐进非扩张映像 不动点 applied mathematics nonlinear analysis hybrid algorithm generalized mixed equilibrium problem asymptotically nonexpansive mapping fixed points
  • 相关文献

参考文献8

  • 1W. A. Kirk.Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type[J]Israel Journal of Mathematics,1974(4).
  • 2Bruck R E,,Kuczumow T,Reich S.Convergence of iterates of asymptotically nonexpansive in Banach spaceswith the uniform Opial propertyColloqMath,1993.
  • 3Dehghan H,Gharajelo A,Afkhamitaba D.Approximating fixed points of non-Lipschitzian mappings by metricprojectionsFixed point Theory and Applications,2011.
  • 4Kamraksa U,Wangkeeree R.Existence and iterative approximation for generalized equilibrium problem for acountable family of nonexpansive mapping in Banach spacesFixed point Theory and Applications,2011.
  • 5Oka H.An Ergodic for asymptotically nonexpansive mapping in the intermediate senseProceedings oftheAmerican Mathematical Society,1997.
  • 6Goebel K,Kirk WA.A fixed point theorem for asymptotically nonexpansive mappingsProceedings of the American Mathematical Society,1972.
  • 7Zeidler E.Nonlinear Functional Analysis and its Application I: Fixed -Point Theorems,1986.
  • 8TakahashiWNonlinear Functional Analysis.

共引文献1

同被引文献9

  • 1Jung J S. Strong convergence of composite iterative meth- ods for equilibrium problems and fixed point problems[J ]. Appl. Math. Comput., 2009, 213: 498-505.
  • 2Marino G, Xu H K. A general iterative method for non- expansive mappings in hilbert spaces[J]. J. Math. Anal. Appl., 2006, 318(1): 43-52.
  • 3Shehu Y. Fixed point solutions of generalized equilibrium problems for nonexpansive mappings [ J ]. J. Math. Comp. Appl., 2010, 234(3): 892-898.
  • 4Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappings in Hilbert spaces [J ]. J. Math. Anal. Appl., 1967, 20(2): 197-228.
  • 5Blum E, Oettli W. From optimization and variational in- equilities to equilibrium problems [ J ]. Math. Student, 1994, 63: 123-145.
  • 6Browder F E. Nonlinear monotone operators and convex sets in Banach spaces [J ]. Bull. Amer. Math. Soc., 1965, 71(5): 780-785.
  • 7Peng J W, Yao J C. A new hybrid-extragradient method for generalized mixed equilibrium problem and fixed point problems and variational inequality problems[ J ]. J. Tai- wan Math., 2008, 12(6): 1401-1433.
  • 8Xu H K. Inequalities in banach spaces with applications [J]. Nonlinear Anal. , 1991, 16(12): 1127-1138.
  • 9Takahashi S, Takahashi W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space[J]. Nonlinear Anal., 2008, 69(13) : 1025-1033.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部