期刊文献+

高速可配RSA加速器设计与实现 被引量:2

Design and implementation of high-speed configurable RSA accelerator
下载PDF
导出
摘要 为实现高速可配RSA硬件加速器,提出了一种基于基—64蒙哥马利算法的模乘器流水线架构及其对应的可配置存储结构。通过五级流水线的并行运算和存储器的灵活配置,可以高效地实现256位到2048位的RSA运算。实验结果表明:与其他相关工作比较,提出的流水线架构能够取得较好的性能和资源消耗比,加速器在模乘器性能和数据吞吐率方面有明显提高。在73 k门硬件资源下,在1024位RSA运算情况下,实现了333 kbps的数据吞吐率。 To implement high-speed configurable RSA accelerator,a pipelined modular multiplier architecture based on radix—64 Montgomery modular multiplication algorithm and its corresponding configurable memory architecture are proposed.With parallel calculation of five-stage pipeline and configurable memory,it fulfills RSA calculation ranging from 256-bit to 2048 bit efficiently.As is shown in experiment,compared with other related works,the proposed pipeline architecture can reach better tradeoff between performance and resource.The accelerator is able to increase the performance of modular multiplier and total data throughput.With 73-kilo gates,it achieves 333 kbps data throughput for 1024-bit RSA calculation.
出处 《传感器与微系统》 CSCD 北大核心 2012年第6期97-100,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金重大国际合作研究项目(60720106003)
关键词 RSA 蒙哥马利模乘 基— 并行流水线 可配 RSA Montgomery modular multiplication radix-64 parallel pipeline configurable
  • 相关文献

参考文献8

  • 1Rivest R L,Shamir A,Adleman L. Method for obtaining digital sigratures and public key cryptosystems[J].Communications of the ACM,1978,(02):120-126.
  • 2Montgomery P L. Modular multiplication withont trial division[J].Mathematics of Computation,1985,(44):519-521.
  • 3Zheng Xinjian,Liu Zexiang,Peng Bo. Design and implementation of an ultra low power liSA coprocessor[A].2008.1-5.
  • 4Liu Jizhong,Dong Jinming. Design and implementation of an efficient RSA crypto-processor[A].2010.368-372.
  • 5蒋晓娜,段成华.改进的蒙哥马利算法及其模乘法器实现[J].计算机工程,2008,34(12):209-211. 被引量:4
  • 6Huang Miaoqing,Gaj K,Kwon S. An optimized hardware architecture for the Montgomery multiplication algorithm[J].Publlc Key Cryptography(PKC) LNCS,2008.214-228.
  • 7王缔郦,白国强,陈弘毅.一种Montgomery模乘算法硬件结构[J].微电子学与计算机,2010,27(5):1-4. 被引量:4
  • 8Chen Yunlu,Tseng Chihyeh,Chang Hsiechia C. Design and implementation of reconfigurable RSA cryptosystem[A].2007.1-4.

二级参考文献9

  • 1Rivest R L, Shamir A, Adleman L. Method for obtaining digital signatures and public key cryptosystems[J]. Communications of the ACM, 1978,21(2) : 120 - 126.
  • 2Peter L Montgomery. Modular multiplication without trial division [J ]. Mathematics of Computation, 1985, 44 (170) : 19 - 521.
  • 3Miaoqing Huang, Kris Gaj, Soonhak Kwon, et al. An optimized hardware architecture for the montgomery multiplication algorithm [J ]. Public Key Cryptography - PKC, LNCS, 2008(4939) :214 - 228.
  • 4Alexandre F Tenca, cetin K. A scalable architecture for montgomery multiplication[J]. CHES 1999, LNCS, 1999 (1717) : 94 - 108.
  • 5Alexandre F, Tenca, cetin K, et al. A scalable architecture for modular multiplication based on montgomery's algorithm[J]. IEEE Transactions on Computers, 2003,52 (9) : 1215 - 1220.
  • 6Walter C D. Systolic Modular Multiplication[J]. IEEE Transactions on Computers, 1993, 42(3): 376-378.
  • 7Kornerup R A Systolic, Linear-array Multiplier for a Class of Right-shift Algorithms[J]. IEEE Transactions on Computers, 1994, 43(8): 892-898.
  • 8Nedjah N, De M M L. Three Hardware Architectures for the Binary Modular Exponentiation: Sequential, Parallel, and Systolic[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2006, 53(3): 627-633.
  • 9Walter C D. Improved Linear Systolic Array for Fast modular Exponentiation[J]. IEE Computers Digit. Tech., 2000, 47(5): 323- 328.

共引文献6

同被引文献19

  • 1孙登峰.有限域GF(p)中逆运算的计算机算法[J].信息安全与通信保密,1997,19(4):57-59. 被引量:5
  • 2谭丽娟,陈运.模逆算法的分析、改进及测试[J].电子科技大学学报,2004,33(4):383-386. 被引量:10
  • 3Rivest R L,Shamir A,Adleman L.A method for obtaining digital signatures and public-key cryptosystems[J].Communications of the ACM,1978,21(2):120-126.
  • 4Kaliski B S.The Montgomery inverse and its applications[J].IEEE Transactions on Computers,1995,44(8):1064-1065.
  • 5Menezes A J,van Oorschot P C,Vanstone S A.Handbook of applied cryptology[M].New York:CRC Press,1997.
  • 6Knuth D E.The art of computer programming Volume2:seminumerical algorithms[M].2nd ed.Reading,Mass.:Addison-Wesley,1981.
  • 7Savas E,Koc C K.The Montgomery modular inverserevisited[J].IEEE Transactions on Computers,2000,49(7):763-766.
  • 8Stallings W.Cryptography and network security-principles and prictices[M].4th ed.[S.l.]:Pearson Education,2006.
  • 9Montgomery P L.Modular multiplication without trial division[J].Mathematics of Computation,1985,44(170):519-521.
  • 10Blum T,Paar C.High-radix Montgomery modular exponentiation on reconfigurable hardware[J].IEEE Transactions on Computers,2001,50(7):759-764.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部