期刊文献+

基于LM算法BP神经网络的高炉-转炉界面铁水温度预报模型 被引量:16

Prediction Model of Hot Meltal Temperature for BF-BOF Interface Based on LM BP Neural Network
原文传递
导出
摘要 通过研究高炉-转炉界面铁水运输过程温度的主要影响因素,确定了影响高炉-转炉界面铁水运输过程温度的参数,建立了基于Levenberg-Marquardt(LM)算法BP神经网络的高炉-转炉界面铁水温度及铁水过程温降的预报模型。用沙钢100包铁水数据进行模型训练,50包铁水数据进行现场预报,结果表明:在高炉-转炉界面"一包到底"模式下,当绝对误差│X│≤20℃时,铁水温度命中率为94%,铁水温降命中率为78%;当绝对误差│X│≤40℃时,铁水温度命中率为100%,铁水温降命中率为92%,该预报模型能够满足现场实际生产需求,对炼钢生产有很好的指导意义。 Through studying the main influencing factor of hot metal transportation process temperature for BF-BOF interface,the main parameters affecting temperature of hot metal transportation process for BF-BOF interface was determined,and a prediction model of hot metal temperature for BF-BOF interface was established based on Levenberg-Marquardt(LM) algorithm of BP neural network.The data of 100 ladles were used to training the model and the other 50 ladles were selected as the predictive samples.It is shown that: under the model of 'one hot metal ladle going through process' for BF-BOF interface,when the absolute error│X│≤20 ℃,the temperature of hot metal is shooting 94%,the hit rate of temperature drop of hot metal is 78%;when the absolute error│X│≤40 ℃,the temperature of hot metal is shooting 100%,the hit rate of temperature drop of hot metal is 92%,this prediction model can meet the actual production needs and can provide a very good guide to steel-making production.
出处 《钢铁》 CAS CSCD 北大核心 2012年第9期40-42,49,共4页 Iron and Steel
关键词 温度 BP神经网络 LM算法 预报模型 temperature BP neural network LM algorithm predictive model
  • 相关文献

参考文献15

  • 1朱苗勇.现代冶金学:钢铁冶金卷[M]北京:冶金工业出版社,2005.
  • 2陈家祥.钢铁冶金:炼钢部分[M]北京:冶金工业出版社,1990.
  • 3王雅贞.转炉炼钢问答[M]北京:冶金工业出版社,2003.
  • 4戴葵.神经网络实现技术[M]长沙:国防科技大学出版社,2004.
  • 5许东;吴铮.基于MATLAB6.X的系统分析与设计——神经网络X的系统分析与设计——神经网络[M].西安:西安电子科技大学出版社,2002.
  • 6楼顺天;姚若玉;沈俊霞.MATLAB7.X程序设计语言X程序设计语言[M].西安:西安电子科技大学出版社,2007.
  • 7Yun S Y,Chang K S. Dynamic Predication Using Neural Network for Automation of BOF Process in Steel Industry[J].I & SM,1996,(08):37.
  • 8刘洪霖;包宏.化工冶金过程人工智能优化[M]北京:冶金工业出版社,1999.
  • 9Wasserman P D. Neural Computing:Theory and Practice[M].New York:Van Nostrand Reinhold Company Inc,1989.
  • 10张慧书,战东平,姜周华.基于改进BP神经网络的铁水预处理终点硫含量预报模型[J].钢铁,2007,42(3):30-32. 被引量:16

二级参考文献22

  • 1冯明霞,邹宗树,李强.应用改进的神经网络模型预报转炉冶炼终点[J].炼钢,2006,22(1):40-44. 被引量:9
  • 2常立忠,李正邦.基于BP神经网络的转炉静态模型[J].炼钢,2006,22(6):41-44. 被引量:12
  • 3甄云璞,冯聚和.基于神经网络的转炉冶炼终点锰、磷静态预报模型[J].河北理工学院学报,2007,29(2):16-19. 被引量:3
  • 4李彦平 潘德惠.BOF系统的炉气分析及其自动控制[J].控制与决策,1988,(2):7-10.
  • 5王耀南.计算智能信息处理技术及其应用[M].湖南大学出版社,1998..
  • 6H Kanoshima,M Sanui,S Morimoto,et al.Development of Advanced Knowledge Engineering System for Operation Control of Oita No.2 Blast Fumace[A].Proceeding of the Sixth International Iron and Steel Congress[C].Japan:Nagoya,1990,387-394.
  • 7H Kominami,N Kamada,S Naitoh,et al.Nippon Steel Technical Report[J].1991,(49):34-38.
  • 8R A S Mahmood,R J Liou.Fast Learning Process of Multilayer NN using RLS methods[J].IEEE,Trans.Signal Processing,1992,446-450.
  • 9S Yi,B W Wah.Global Optimization for NN Training[J].IEEE Computer,1996,(3):45-54.
  • 10冯明霞.复吹转炉神经网络终点预测模型[D].沈阳:东北大学,2004.

共引文献32

同被引文献210

引证文献16

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部