期刊文献+

带递归单元的模糊感知器的δ-规则的有限收敛性

Finite convergence of δ-rule for a recurrent fuzzy perceptron
下载PDF
导出
摘要 针对带递归的模糊感知器,提出模糊δ-规则,其中样本以完全随机顺序输入。证明了若训练样本模糊可分,在一定条件下,算法有限收敛,即有限步训练后网络能将所有样本正确分类,可以准确完成模糊可分样本的分类问题。 A fuzzy δ-rule training algorithm was proposed for a recurrent fuzzy perceptron,in which the training patterns were supplied in completely stochastic order.It was proved that fuzzy δ-rule training algorithm was finitely convergent in the case that the training patterns were fuzzily separable.The training patterns could be correctly classified by the net after finite steps of iterating so that the perceptron could effectively solve classification problems.
出处 《大连工业大学学报》 CAS 北大核心 2012年第5期376-378,共3页 Journal of Dalian Polytechnic University
关键词 递归 模糊感知器 模糊可分 recurrent fuzzy perceptron fuzzily separable
  • 相关文献

参考文献4

二级参考文献3

  • 1刘燕,杨洁.带阈值的模糊感知器的收敛性[J].高等学校计算数学学报,2005,27(S1):320-323. 被引量:2
  • 2Wu W,Shao Z.Convergence of online gradient methods for continuous perceptrons with linearly separable training patterns[].Applied Mathematics Letters.2003
  • 3Stefka Stoeva Alexander Nikov.A fuzzy backpropagation algorithm[].Fuzzy Sets and Systems.2000

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部