摘要
构造出两个平稳过程不平稳相依及平稳过程之和不平稳的例子.给出n个平稳随机过程之和为平稳过程的一个充分条件:设W(t)是n个平稳随机过程Xi(t)(i=1,2,...,n)之和,如果Xi(t)是两两平稳相依的,那么W(t)也是平稳随机过程.并作应用,得出一个重要结论,即X(t)平稳随机过程与其所有各阶导数(若存在的话)之和为平稳过程.
Examples that two stationary stochastic processes are not stationarily dependent and sum of stationary stochastic processes is not stationary are constructed.A sufficient condition that sum of n stationary stochastic processes is stationary is given: suppose that W(t) is sum of n stationary stochastic processes Xi(t)(i = 1,2,...,n),then W(t) is stationary stochastic process if Xi(t) is pairwise stationarily dependent.One application is given and an important conclusion that sum of stationary stochastic process X(t) and its derivatives of all orders(if exist) is stationary stochastic process,is obtained.
出处
《河北工业大学学报》
CAS
北大核心
2012年第5期70-72,共3页
Journal of Hebei University of Technology
基金
天津市高等学校科技发展基金项目(20070402)
天津商业大学教育教学改革项目
关键词
平稳随机过程
平稳相依
导数
充分条件
stationary stochastic processes
stationarily dependent
derivative
sufficient condition