期刊文献+

社会考试考场选择的多目标优化模型 被引量:5

Multi-Objective Optimization Model for Site Selection of Social Examination
下载PDF
导出
摘要 针对社会考试需考虑考场距离和综合条件的考场选择问题,提出了一种描述考生不便利性的定量化描述方法,建立了一个多目标的线性0 1整数规划的考场选择优化模型·该问题是一种特殊形式的选址 优化问题·采用多目标加权组合将多目标问题转化为单目标问题·通过设计合适的罚函数处理考场容量约束,将有约束问题转化为无约束问题·为求解以上问题,开发了一个采用双切点交叉和换位变异的遗传算法·通过对大量实际的算例进行计算取得了满意的结果· In China, there are a very big number of various examinees to take different social examinations at different places each year. To solve the site selection problem of social examinations with the site distribution and condition taken into consideration, a description method is proposed to quantify the inconvenience of students. A multi-objective linear programming model is built with 0-1 integer for optimizing the selection of examination sites. The problem is in fact a special type of classical location-allocation problems. To solve the model, the multiple objectives are translated into single objective by using weighted sum. The capacity constraints of the examination sites are treated by a designed penalty function. Then, the problem is simplified as an unconstrained one. A genetic algorithm with two cutting point crossover and swapping mutation is developed for the solution. The computation on a large number of examples with actual data showed satisfactory results.
作者 刘铸 汪定伟
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第8期758-760,共3页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60084003 70171056)
关键词 考试组织 多目标决策 选址-分配问题 最优化 遗传算法 examination organization multi-objective decision location-allocation problem optimization genetic algorithm
  • 相关文献

参考文献11

  • 1Cooper L. Location-allocation problems[J]. Operations Research, 1963,11(3):331-344.
  • 2Bongartz I. A projection method for norm location-allocation problems[J]. Mathematical Programming, 1994,66(3):283-312.
  • 3Geoffrion A M, Graves G W. Multicommodity distribution system design[J]. Management Science, 1974,20(5):822-844.
  • 4Steuer R E. Multiple criteria optimization: theory, computation, and application[M]. New York:John Wiley & Sons, 1986.
  • 5Cai X, Li K N. A genetic algorithm for scheduling staff of mixed skills under multi-criteria[J]. Eur J of Operational Res, 2001,125(2):359-369.
  • 6Gen M, Cheng R. Genetic algorithm and engineering design[M]. New York: John Wiley & Sons, 1997.
  • 7Michalewicz Z. Genetic algorithm+data structure=evolution programs[M]. 3rd Edition. New York:Springer-Verlag, 1996.
  • 8Gerber M U, Kobler D. Algorithmic approach to the satisfactory graph partitioning problem[J]. Eur J of Operational Res, 2001,125(2):283-291.
  • 9教育部考试中心.考试研究论文专集[M].北京: 高等教育出版社,1992..
  • 10于信凤.考试学引论[M].沈阳: 辽宁人民出版社,1997..

二级参考文献8

  • 1Liu Baoding and Zhao Reiqing. Stochastic Programming and Fuzzy Programming [M]. Beijing: Tsinghua University Press, 1998,164-172 (in Chinese)
  • 2Liu Baoding and Iwamura K. Chance constrained programming with fuzzy parameters [J]. Fuzzy Sets and Systems, 1998,94(2):227-237
  • 3Brown G G, Graves G W and Honczarenko M D. Design and operation of a multicommodity production/distribution system using primal goal decomposition [J]. Management Science, 1987,33(11):1469-1480
  • 4Geoffrion A M and Graves G W. Multicommodity distribution system design [J]. Management Science, 1974,20(5):822-844
  • 5Van Roy T J. Multi-level production and distribution planning with transportation decision fleet optimization [J]. Management Science, 1989,35(12):1443-1453
  • 6Zadeh L A. Fuzzy sets as a basis for a theory of possibility [J]. Fuzzy Sets and Systems, 1978,1(1):3-28
  • 7Fang Shucheng and Wang Dingwei. Fuzzy Mathematics and Fuzzy Optimization [M]. Beijing: Science Press, 1997,263-264 (in Chinese)
  • 8Delgado J L and Verdegay M A. A general model for fuzzy linear programming [J]. Fuzzy Sets and Systems, 1989,29(2):21-29

共引文献55

同被引文献49

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部