期刊文献+

环境温度对纳米掺镝铁氧体颗粒磁特性的影响 被引量:2

Effect of Ambient Temperature for Magnetic Properties of Dysprosium Ferrite Nanoparticles
原文传递
导出
摘要 在水相体系中用化学共沉淀法制备出纳米掺镝铁氧体磁颗粒,利用透射电镜(TEM)观察了磁颗粒的形貌,X-射线衍射仪(XRD)确定了产物的相结构,超导量子干涉仪(SQUID)测试了样品的磁性能。在318~378K范围内,研究了温度变化对产物磁特性的影响。TEM图片和XRD图谱分析表明,样品的形貌近似球形,具有立方尖晶石型结构,平均粒径约18 nm左右。对产物的磁性能研究显示,318K时的饱和磁化强度(MS)为183.4 mT,温度升高MS呈现出降低的变化规律;318K时的矫顽力(HC)为0.345 mT,温度升高HC减小,超顺磁性的特性增强。 Dysprosium ferrite nanoparticles were prepared by the chemical co-precipitation method in the water phase system.The morphologies of particles were observed by transmission electron microscope(TEM);The structure of products were characterized by X-ray diffraction(XRD)and the magnetic properties of sample were characterized by super-conducting quantum interference device(SQUID).The effect of various temperatures on magnetic properties of the products were investigated in the range of 318~378 K.The TEM image and XRD pattern analysis revealed that the shape of magnetic particles is approximately spherical,with the average size about 18nm and cubic spinel structure.Saturation magnetization(MS) of the products is 184.2mT at 318K,and MS of the magnetic nanoparticles decreases with increasing temperature.Coercitivity(HC) of sample is 0.345mT at 318K and it decreases with increasing temperature,whereas superparamagnetic becomes more obvious.
出处 《功能材料与器件学报》 CAS CSCD 北大核心 2013年第1期10-14,共5页 Journal of Functional Materials and Devices
基金 安徽省教育厅自然科学基金资助项目(2006Kj143B)
关键词 纳米磁颗粒 掺镝铁氧体 磁特性 环境温度 magnetic nanoparticles Dy3+-doped ferrite magnetic properties ambient temperature.
  • 相关文献

参考文献14

二级参考文献97

共引文献49

同被引文献28

  • 1盖永芳,俞成丙,吴若峰,易群,徐静靓.聚乙烯醇分散水基磁流体制备工艺[J].机械工程材料,2008,32(2):15-17. 被引量:4
  • 2Holotescu S,Stoian F D,Marinica O,et al. Utilization of the magnetogranutometric analysis to estimate the thermal conductivity of the magnetic fluids [ J ]. Journal of Magnetism and Magnetic Materials, 2011,323 : 1343-1347.
  • 3Hiroshige K, Satoshi O, Koki A,et al. Experimental study on mieropump using reciprocating motion of magnetic ball covered with magnetic fluid [ J ]. Physics Procedia ,2010,9:238-242.
  • 4Hu Y,Zhao Y,Li X,et al. Novel optical fiber current sensor based on magnetic fluids[J]. Chinese Optics Letters,2011,8(4) :392-394.
  • 5Milos B, Mladen T, Marko J, et al. An experimental study of magnetic-field and temperature dependence on magnetic fluids heating power [ J ]. Journal of Journal of Magnetism and Magnetic Materials ,2013,331:264-268.
  • 6Zhao Y, Lv R Q, Zhang Y Y, et al. Utilization of the magnetogranulometric analysis to estimate the thermal conductivity of the magnetic fluids [ J l- Optics atrd Lasers in Engineering ,2012 ,50 :1177-1184.
  • 7Desai R, Upadhyey R V, Davariya V, et al. Structural magnetic characterization of thermosensitive magnetic fluid [ J ]. Physics Procedia, 2010,9 : 6- 8.
  • 8Buhc B, Yang Q, Xiang Y M, et al. Preparation and magnetic performance of the magnetic fluid stabilized by bi-surfactant [ J ]. Journal of Magnetism and Magnetic Materials ,2013,332 : 151-156.
  • 9Desai R, U padhyey R V, Davariya V, et al. Structural magnetic characterization of thermosensitive magnetic fluid [ J ]. Physics Procedia,2010,9:6- 8.
  • 10Katiyai A, Singh A N, Shukla P, et al. Rheological behavior of magnetic nanofluids containing spherical nanoparticles of Fe-Ni heating[ J]. Poder, Technology,2012,22A : 86 -89.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部