期刊文献+

依概率分类的保持投影及其在人脸识别中的应用 被引量:6

Probabilistic classification preserving projections and its application to face recognition
下载PDF
导出
摘要 为了提高低维空间对原始高维样本的表示能力,该文提出了依概率分类的保持投影算法(PCPP)。PCPP考虑了样本类别信息,并重新定义类内样本间的相似性,包含样本的邻域信息,而且在K近邻选择下,还能反映样本被正确归类的概率。样本经投影后,在低维特征空间内,被正确归类且概率较大的类内样本间的邻域关系得到了保持。在Yale、FERET及AR人脸库上的人脸识别实验表明,PCPP较其他算法取得了更好的识别性能。 In order to improve the ability of low dimensional space to represent high-dimensional samples,a novel manifold learning method called probabilistic classification maintain projection(PCPP) is proposed.The PCPP takes class information into account and refines similarity weights of intra-class samples,which not only contain neighborhood information of samples,but also can reflect the probability that a sample can be correctly classified when its K nearest neighbors are selected.After projection,neighborhood relationship of the intra-class samples which possess more classification probability can be preserved.Experimental results on the Yale,FERET and AR face databases demonstrate that the PCPP performs better than other algorithms.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期7-11,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60632050) 国防科工局高分专项(民用部分)(E0310/1112/JC01)
关键词 人脸识别 特征提取 降维 流形 局部保持投影 face recognition feature extraction dimensionality reduction manifold locality preserving projections
  • 相关文献

参考文献17

  • 1Turk M A;Pentland A P.Eigenfaces for Recognition,1991(07).
  • 2Belhumeur P N;Hespanha J P;Kriegman D J.Eigenfaces vs fisherfaces:Recognition using class specific linear projection,1997(07).
  • 3Roweis S T;Saul L K.Nonlinear Dimensionality Reduction by Locally Linear Embedding,2000(5500).
  • 4Tenenbanm J B;Silva V De;Langford J C.A global fecmetric frame-work for nonlinear dimensionality reduction,2000.
  • 5Belkin M;Niyogi P.Laplacian eigenmap for dimensionality reduction and data representation,2003(06).
  • 6He X;Yang S;Hu Y.Face recognition using laplacianfaces,2005(03).
  • 7Zhao H;Sun S;Jing Z.Local structure based supervised feature extraction,2006.
  • 8Yan S C;Xu D;Zhang B Y.Graph embedding and extensions:A general framework for dimensionality reduction,2007(01).
  • 9Sugiyama M.Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis,2007(05).
  • 10Li B;Wang C;Huang D S.Supervised feature extraction based on orthogonal discriminant projection,2009(1-3).

二级参考文献7

共引文献10

同被引文献29

  • 1TUEK M, PENRLAND A. Eigenfaces for recognition [ J]. Journal of Cognitive Neuroscierce, 1991, 3 ( 1 ) : 71-86.
  • 2PETER N BELHUMEUR, JOAO P HESPANHA, DA- VID J KRIENGMAN. Eigenfaces vs Fisherfaces : Rec- ognition using class specific linearprojection[ J]. IEEE Trans on Pattern Anal Machine Intell, 1997, 19 (7): 71 1-720.
  • 3YUZHU JIANG. Application of Fishface Algorithm to Face Recognition System [ C ]//Proceedings of 2011 13th IEEE Joint International Computer Science and Information Technology Conference ( JICSIT 2011 ) , 2011,3:324-327.
  • 4TIMO AHONEN,ABDENOUR HADID. Face Descrip-tion with Local Binary Patterns: Application to Face Recognition [ J]. IEEE TRANSACTIONS ON PAT- TERN ANALYSIS AND MACHINE INTELLIGENCE, 2006,28 ( 12 ) :2307-2041.
  • 5TIMO AHONEN, RAHTU E, OJASIVU V,et al. Rec- ognition of blurred faces using local phase quantization [ R ]. International Conference on Pattern Recognition, 2008.
  • 6TIMO AHONEN, PIETIKAINEN M. Image description using joint distribution of filter bank responses [ J ]. Pattern Recognition Letters, 2009,30 ( 4 ) : 368-376.
  • 7OJANSIVU V, HEIKKIL J. Blur insensitive texture classification using local phase quantization [ C ]//In- ternational Conference on Image and Signal Process- ing, 2008.
  • 8JANNE HEIKKILL, VILLE OJANSIVU, ESA RAH- TU. Improved Blur Insensitivity for Deeorrelated LocalPhase Quantization [ C ]//20th International Conference on Pattern Recognition,2010.
  • 9TIMO AHONEN, RAHTU E, OJASIVU V, et al. Rec- ognition of blurred faces using local phase quantization [C ]//International Conference on Pattern Recogni- tion ,2008 : 1-4.
  • 10王建国,杨万扣,郑宇杰,杨静宇.一种基于ICA和模糊LDA的特征提取方法[J].模式识别与人工智能,2008,21(6):819-823. 被引量:9

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部