摘要
为了提高低维空间对原始高维样本的表示能力,该文提出了依概率分类的保持投影算法(PCPP)。PCPP考虑了样本类别信息,并重新定义类内样本间的相似性,包含样本的邻域信息,而且在K近邻选择下,还能反映样本被正确归类的概率。样本经投影后,在低维特征空间内,被正确归类且概率较大的类内样本间的邻域关系得到了保持。在Yale、FERET及AR人脸库上的人脸识别实验表明,PCPP较其他算法取得了更好的识别性能。
In order to improve the ability of low dimensional space to represent high-dimensional samples,a novel manifold learning method called probabilistic classification maintain projection(PCPP) is proposed.The PCPP takes class information into account and refines similarity weights of intra-class samples,which not only contain neighborhood information of samples,but also can reflect the probability that a sample can be correctly classified when its K nearest neighbors are selected.After projection,neighborhood relationship of the intra-class samples which possess more classification probability can be preserved.Experimental results on the Yale,FERET and AR face databases demonstrate that the PCPP performs better than other algorithms.
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2013年第1期7-11,共5页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金(60632050)
国防科工局高分专项(民用部分)(E0310/1112/JC01)
关键词
人脸识别
特征提取
降维
流形
局部保持投影
face recognition
feature extraction
dimensionality reduction
manifold
locality preserving projections