期刊文献+

小空化数下带尾翼射弹超空泡减阻试验与数值模拟 被引量:5

Experimental and numerical investigation of supercavity drag reduction of wing-projectiles under small cavitation number
下载PDF
导出
摘要 为探究水下高速带尾翼射弹的超空泡减阻特性,利用自行研制的水下测速系统,对所设计的几种结构的带尾翼射弹模型进行了带尾翼超空泡射弹从空气入水的试验研究。通过试验数据的分析和处理,获得小空化数下带尾翼超空泡射弹的阻力系数。采用N-S方程、压力隐式算子分裂(PISO)算法、大涡模拟湍流模型和流体体积函数(VOF)方法,对绕三维带尾翼射弹非定常空泡流动进行数值模拟,计算结果与试验数据吻合较好。分析了小空化数下带尾翼射弹超空泡的减阻效果,最大减阻率可达93.1%。与普通射弹的超空泡流特性相对比,尾翼结构对超空泡射弹的阻力特性影响不大,但可以显著提高射弹运动的稳定性。 In order to investigate the supercavity drag reduction characteristics of underwater high-speed wing-projectiles,wing-projectile models with multi-configuration parameters are designed.The experiments of the supercavitating wing-projectile ripping from air into water are carried out with the self-developed underwater speed measuring system.By analyzing the experimental data,the drag coefficients of the supercavitating wing-projectile small cavitation number are determined.Based on the N-S equations and the algorithm of the pressure-implicit with splitting of operators(PISO),the numerical simulation of the three-dimensional unsteady cavitating flow around the wing-projectile is implemented by adopting the large eddy simulation(LES) turbulence model and VOF method.The numerical simulation result agrees well with the experiment.On the basis of experimental data and numerical simulation,the supercavity drag reduction effect of the wing-projectile under the small cavitation number is analyzed and the drag reduction ratio can reach 93.1% approximately.Finally,the supercavitating flow of general projectile is investigated.The results show that the wing structure has little influences on the drag characteristics of the supercavitating projectile and the wing-projectile has good navigation stability.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第2期244-250,共7页 Journal of Nanjing University of Science and Technology
基金 国防重点实验室基金(9140C300502130C30002)
关键词 减阻 超空泡 尾翼射弹 非定常流动 空化数 drag reduction supercavity wing-projectiles unsteady flow cavitation number
  • 相关文献

参考文献18

  • 1Wang G,Ostoja-Starzewski M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil[J].Applied Mathematical Modelling,2007,(3):417-447.
  • 2Grogger H A,Alajbegovic A. Calculation of the cavitating flow in venturi geometries using two fluid models[J].ASME,1998.98-5295.
  • 3Lee J. A potential based panel method for the analysis of marine propellers in steady flow[D].Massachusetts,USA:Department of Ocean Engineering,Massachusettes Institute of Technology,1987.
  • 4Senocak I,Shyy W. A pressure-based method for turbulent cavitating flow computation[J].Journal of Computational Physics,2002.363-383.
  • 5Robert F K,David A B,David R S. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J].Computers and Fluids,2000.849-875.
  • 6Claudia O,Ceccio S. The Influence of developed cavitation on the flow of a turbulent shear layer[J].Physics of Fluids,2002.3414-3431.
  • 7Reichardt H. The physical laws governing the cavitation bubbles produced behind solids of revolution in a fluid flow[R].Nigel Balchin,Great Britain:Ministry of Aircraft Production Report and Translation,1946.322-326.
  • 8Yuriy D V. Experimental investigation of supercavitation flow regimes at subsonic and transonic speeds[A].Osaka,Japan:Nova Science,2003.
  • 9Saranjam B. Experimental and numerical investigation of an unsteady supercavitating moving body[J].Ucean Engineering,2013.9-14.
  • 10周景军,于开平.空化器倾斜角对超空泡流影响的三维数值仿真研究[J].船舶力学,2011,15(1):74-80. 被引量:12

二级参考文献65

共引文献72

同被引文献34

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部