摘要
研究Dirichlet边界条件下的积分-微分算子逆结点问题.证明了积分-微分算子稠定的结点子集能够唯一确定[0,π]上的势函数q(x)和区域D0上的积分扰动核M(x-t)且给出了这个逆结点问题的解的重构算法.
In this paper,we discuss the inverse nodal problem for integro-differential operators with Dirichlet boundary conditions.We show that a dense subset of nodal points for the integrodifferential operator is sufficient to determine the potential q(x) on the finite interval[0,π]as well as the kernel of integral perturbation M(x - t) on the region D_0 and provide a constructive procedure for the solution of the inverse nodal problem.
出处
《应用泛函分析学报》
CSCD
2013年第1期47-52,共6页
Acta Analysis Functionalis Applicata
基金
国家自然科学基金(11171152)
关键词
逆结点问题
积分-微分算子
势函数
积分扰动核
inverse nodal problem
integro-differential operator
potential
kernel of integral perturbation