期刊文献+

一类带扰动项的拟线性抛物型方程解的存在性

Existence and Uniqueness of Strong Solutions for a Parabolic Quasilinear Problem with Perturbations
下载PDF
导出
摘要 主要利用算子的性质证明了一类带扰动项的拟线性方程的L^2(Ω)初值和狄立克莱边值问题解的存在性和唯一性. In this paper,we prove existence and uniqueness of strong solutions for perturbations of a parabolic quasilinear problem with Dirichlet boundary conditions when the initial data is an L^2(Ω) function.
作者 芮杰 左文杰
出处 《应用泛函分析学报》 CSCD 2013年第1期60-65,共6页 Acta Analysis Functionalis Applicata
基金 Fundamental Research Funds for the Central Universities(12CX04081A 11CX04058A) 山东省自然科学基金(ZR2011AQ017)
关键词 拟线性抛物方程 完全增长算子 强解 parabolic quasilinear problem accretive operators strong solution
  • 相关文献

参考文献15

  • 1Lichenwski A,Teman R. Pseudosolutions of the time dependent minimal surface problem[J].Journal of Differential Equations,1978.340-364.
  • 2Zhou X. An evolution problem for plastic antiplanar shear[J].Appl Math Optm,1992.263-285.
  • 3芮杰,李维国.一类极小问题解的存在性[J].应用泛函分析学报,2009,11(3):284-288. 被引量:1
  • 4芮杰,杨孝平.极小变分流牛曼问题的弱解的存在性[J].应用泛函分析学报,2009,11(4):356-362. 被引量:2
  • 5芮杰,杨孝平.极小全变分流第一边值问题弱解的存在性[J].数学物理学报(A辑),2011,31(4):958-969. 被引量:1
  • 6Wittbold P. Nonlinear diffusion with absorption[J].Pot Anal,1997.437-465.
  • 7Hardt R,Zhou X. An evolution problem for linear growth functionals[J].Communications in Partial Differential Equations,1994.1879-1907.
  • 8Demengel F,Temam R. Convex functions of a measure and aplications[J].Indiana University Mathematics Journal,1984.673-709.
  • 9Lin F H,Yang X P. Geometric Measure Theory[M].Beijing-New York:Science Press-International Press,2002.
  • 10Andreu F,Caselles V,Mazón J M. Parabolic quasilinear equations minimizing linear growth functionals[J].Progress in Math,2004,(223).

二级参考文献27

  • 1Meyer Y. Oscillating patterns in image processing and nonlinear evolution equations [J]. University Lecture Series AMS, 2002,22.
  • 2Luminita A Vese, Stanley JOsher. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. UCLA C. A. M. Report,2002,02-19.
  • 3Chambolle A, Lions P L. Image recovery via total variation minimization and related problems[J]. Numer Math, 1997,76 : 167-188.
  • 4Vese L. A study in the BV space of a denoising-deblurring variational problem[J]. Applied Mathematics and Optimization ,2001,44(2) :131-161.
  • 5Andreu F, Ballester C, Caselles V, et al. Minimizing total variation flow[J]. Diff Int Eqs,2001,4(3): 321-360.
  • 6Crandall M G, Liggett T M. Generation of nonlinear transformations on general Banach spaces[J]. Amer J Math,1971,93:265-298.
  • 7Aubert Gilles, Pierre Kornprobst. Mathematical Problems in Image Processing [M]. New York: Springer Verlag, 2002.30-70.
  • 8Andreu F, Ballester C, Caselles V, et al. Minimizing total variation flow[J]. Diff Int Eqs,2001,4(3): 321-360.
  • 9Andreu F, Ballester C, Caselles V, et al. The Dirichlet problem for the total variation flow[J].J Funet, Anal ,2001,180(2) : 347-403.
  • 10Lin F H, Yang X P. Geometric Measure Theory[M]. Beijing-New York: Science Press-International Press, 2002.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部