期刊文献+

约束条件映射的度量次正则性

The metric subregularity of constraint multifunctions
下载PDF
导出
摘要 将有限维空间中一种约束集值映射度量次正则性的一个必要条件推广到Asplund空间中,并在subs-mooth假设下,运用变分分析的方法,以法锥的形式在Asplund空间中给出了该约束集值映射度量次正则性的一个充分条件. This paper extended a necessary condition for metric subregularity of constraint multifunctions from finite dimensions to Asplund spaces,and in the same time,using variational technique,it provided a sufficient condition via normal cones for the metric subregularity of constraint multifunctions under the subsmooth hypothesis.
出处 《苏州大学学报(自然科学版)》 CAS 2012年第4期9-12,共4页 Journal of Soochow University(Natural Science Edition)
基金 国家自然科学基金(11161025)
关键词 极限法锥 极限次微分 subsmooth 度量次正则性 limiting normal cone limiting subdifferential subsmooth metrically subregular
  • 相关文献

参考文献9

  • 1Ioffe A D;Outrata J V.On metric and clamness qualification conditions in subdifferential calculus,2008(02).
  • 2Aussel D;Danilidis A;Thiboult L.Subsmooth sets:Functional characterizations and related concepts,2004(04).
  • 3Mordukhovich B S;Shao Y.Nonsmooth sequential analysis in asplund space[J],1996(04).
  • 4Zheng Xiyin;Yang Xiaoqi.Weak sharp minima for semi-infinite optimization problems with applications[J],2007(02).
  • 5Zheng Xiyin;Ng Kunfu.Calmness for L-subsmooth multifunctions in Banach spaces[J],2009(04).
  • 6Zheng Xiyin;Ng Kunfu.Linear regularity for a collection of subsmooth sets in Banach spaces[J],2008(01).
  • 7何青海,欧阳薇.集值映射g(x)+Ω(x)切锥、法锥表示及calmness充分条件[J].云南大学学报(自然科学版),2010,32(5):503-509. 被引量:4
  • 8Clarke,F.H.Optimization and Nonsmooth Analysis,1983.
  • 9Mordukhovich B S.Variational Analysis and Generalized Differentiation Ⅰ,Ⅱ:Basic Theory,2006.

二级参考文献15

  • 1HENRION R, OUTRATA J. Calmness of constraint systems with applications[ J]. J Math Program ,2005,104:437-464.
  • 2HENRION R, JOURANI A, OUTRATA J. On the calmness of a class of multifunctions [ J ]. SIAM J Optim ,2002,13 (2) :603- 618.
  • 3ZHENG Xi-yin,NG Kun-fu. Calmness for L- subsmooth multifunctions in banach spaces [ J ]. SIAM J Optim,2009,19 (4) : 1 648-1 673.
  • 4ZHENG Xi-yin, YANG Xiao-qi. Weak sharp minima for semi - infinite optimization problems with applications [ J ]. SIAM J Optim, 2007,18 ( 2 ) : 573-588.
  • 5ZHENG Xi-yin, NG Kun-fu. Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces[ J]. SIAM J Optim ,2007,18 (2) :437-460.
  • 6ZHENG Xi-yin, NG Kun-fu. Metric regularity and constraint qualifications for convex inequalities on Banach spaces [ J ]. SIAM J Optim, 2004,14 ( 3 ) : 757-772.
  • 7POLIQUIN R A, ROCKAFELLAR R T, THIBOULT L. Local differentiability of distance Functions [ J ]. Trans Amer Math Soc, 2000,352( 11 ) :5 231-5 249.
  • 8AUSSEL D, DANILIDIS A,THIBOULT L. Subsmooth sets:functional characterizations and related concepts [ J ]. Trans Amer Math Soc ,2004,357 (4) :1 275-1 301.
  • 9NG Kun-fu, ZHENG Xi-yin. Characterizations of error bounds for convex multifunctions on Banach spaces [ J ]. Math Oper Res ,2004,29 ( 1 ) :45-63.
  • 10MORDUKHOVICH B S, SHAO Y. Nonsmooth sequential analysis in Asplund space [ J ]. Trans Amer Math Soc, 1996,348 (4) :1 235-1 280.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部