期刊文献+

随机学习规则下的可学习性和LOO稳定性分析(英文) 被引量:1

Learnability and LOO stable under randomized learning rule setting
下载PDF
导出
摘要 学习算法的可学习性是统计学习理论的基本问题.本文指出,一个随机学习问题具有可学习性当且仅当存在AERM且一致LOO稳定的学习规则.同时,得到随机学习规则下通用学习算法的一些结果. The problem of learnability is one of the most basic questions in statistical learning theory.We show that a randomized learning problem is learnable if and only if there exists a learning rule which is always an AERM and uniform-LOO stable.Moreover,a generic learning algorithm in randomization learning rule setting will study.
出处 《苏州大学学报(自然科学版)》 CAS 2012年第4期30-35,共6页 Journal of Soochow University(Natural Science Edition)
基金 Supported by the National Natural Science Foundation of China(60903131) Key Science and Technology Research Project of Education Ministry(210210)
关键词 统计学习理论 学习性 一致收敛 经验风险最小 稳定性 statistical learning theory learnability uniform convergence empirical risk minimizer stability
  • 相关文献

参考文献6

  • 1Vapnik V N.The nature of statistical learning theory,1995.
  • 2Alon N;Ben-David S;Cesa-Bianchi N.Scale-sensitive dimensions,uniform convergence,and learnability,1997.
  • 3Mukherjee S;Niyogi P;Poggio T.Learning theory:stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization,2006.
  • 4Shalev-Shwartz S;Shamir O;Srebro N.Stochastic convex optimization,2012.
  • 5Shalev-Shwartz S;Shamir O;Srebro N.Learnability and stability in the general learning setting,2009.
  • 6Shalev-Shwartz S;Shamir O;Srebro N.Learnability,stability and uniform converegence,2010.

共引文献3

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部