期刊文献+

抽象Zeta函数的对数导数的估计

Estimation of the Logarithmic Derivative in Abstract Zeta Function
下载PDF
导出
摘要 利用抽象Zeta函数ζG(z)的零点分布特点,建立了ζG(z)的对数导数与零点的关系,给出了ζG(z)的对数导数在η<Re z<δ内的估计。 In this paper ,the relations between logarithmic derivative and zero point are established by the distribution characteristics of the abstract Zeta functionζG ( z) .Additionally ,the estimation of ζG ( z) for η<Re z<δ is given .
出处 《山东轻工业学院学报(自然科学版)》 CAS 2013年第2期47-48,共2页 Journal of Shandong Polytechnic University
基金 国家自然科学基金天元基金(11226036)
关键词 抽象解析数论 抽象Zeta函数 对数导数 abstract analytic number theory abstract Zeta function logarithmic derivative
  • 相关文献

参考文献2

二级参考文献13

  • 1Knopfmacher J. Arithmetical properties of finite rings and algebras, and analytic number theory[J]. Bull Am Math Soc, 1970, 76:830- 833.
  • 2Knopfmacher J. Finite modules and algebras over Dedekind domains, and analytic number theory[ J]. Bull Am math Soc, 1972, 78:193- 196.
  • 3Knopfmacher J. Arithmetical properties of finite rings and algebras, and analytic number theory,Ⅰ[J]. Reine Angew Math, 1970, 252: 16-43.
  • 4Knopfmacher J. Arithmetical properties of finite rings and algebras, and analytic number theory, Ⅱ: Categories and analytic number theory [J]. Reine Angew Math, 1970, 254:74-99.
  • 5Knopfinacher J. Arithmetical properties of finite rings and algebras, and analytic number theory,Ⅲ. Finite modules and algebras over Dedekind domains[J]. Reine Angew Math, 1973, 259:157-170.
  • 6Knopfmacher J. Arithmetical properties of finite rings and algebras, and analytic number theory, Ⅳ: Relative asymptotic enumeration and L-series[J]. Reine Angew Math, 1974, 270:97-114.
  • 7Knopfmacher J. Arithmetical properties of finite rings and algebras, and analytic number theory, Ⅴ: Categories and relative analytic number theory[J]. Reine Angew Math, 1974, 271:95-121.
  • 8Knopfmaeher J. Arithmetical properties of finite tings and algebras, and analytic number theory,Ⅵ: maximum order of magNitude[J]. Reine Angew Math, 1975, 277:45-62.
  • 9Knopfmacher J. Abstract analytic number theorem[M]. Amsterdam:North-Holland, 1975.
  • 10Wegmann H. Beitrge zur zahlentheorie auf freien Halbgruppen, Ⅰ-Ⅱ[J]. Reine Angew Math, 1965, 221:20-43, 150-159.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部