摘要
In order to efficiently seal air leakages and control spontaneous combustion of coal, solidified foam was developed by adding a certain compound additive to fly coal ash and cement as the main materials. It was prepared basing on the foaming characteristic through physical and mechanical system. We studied the effects of the different types of foaming agents, the mass ratio of cement to fly ash, and the mass ratio of solid to water and content of cellulose on the performance of solidified foam. The results show that when adding the composite protein, surfactant and cellulose foaming agents. The cement-fly ash ratio of 0.75:1, the water solid ratio as large as 2:1, and the solidified foam with high properties and density of only 516 kg/m 3 and compressive strength of up to 12.68 MPa were prepared. But the initial setting time, identity and compressive strength may be changed by varying the water solid ratio and/or the additives. We theoretically analyzed the influence mechanism of foam density, compressive strength and water solid ratio. The solidified foam is especially suitable for sealing surface leakage channels and filling the goaf with a wide application prospects.
In order to efficiently seal air leakages and control spontaneous combustion of coal, solidified foam was developed by adding a certain compound additive to fly coal ash and cement as the main materials. It was prepared basing on the foaming characteristic through physical and mechanical system. We studied the effects of the different types of foaming agents, the mass ratio of cement to fly ash, and the mass ratio of solid to water and content of cellulose on the performance of solidified foam. The results show that when adding the composite protein, surfactant and cellulose foaming agents. The cement-fly ash ratio of 0.75:1, the water solid ratio as large as 2:1, and the solidified foam with high properties and density of only 516 kg/m 3 and compressive strength of up to 12.68 MPa were prepared. But the initial setting time, identity and compressive strength may be changed by varying the water solid ratio and/or the additives. We theoretically analyzed the influence mechanism of foam density, compressive strength and water solid ratio. The solidified foam is especially suitable for sealing surface leakage channels and filling the goaf with a wide application prospects.
基金
provided by the National Natural Science Foundation of China (No. 50904066)
the Program for New Century Excellent Talents in University (No. NCET-09-0729)
the National Excellent Doctoral Dissertation Special Fund (No. 2007B53)