期刊文献+

THREE POSITIVE SOLUTIONS TO SECOND-ORDER IMPULSIVE NEUMANN BOUNDARY VALUE PROBLEM

THREE POSITIVE SOLUTIONS TO SECOND-ORDER IMPULSIVE NEUMANN BOUNDARY VALUE PROBLEM
原文传递
导出
摘要 Using the fve functionals fxed point theorem, in this paper we present some criteria which guarantee the existence of three positive solutions to second order impulsive Neumann boundary value problem. Using the fve functionals fxed point theorem, in this paper we present some criteria which guarantee the existence of three positive solutions to second order impulsive Neumann boundary value problem.
出处 《Annals of Differential Equations》 2013年第3期288-294,共7页 微分方程年刊(英文版)
基金 supported by Hunan Provincial Natural Science Foundation of China(No.10JJ6002)
关键词 positive solution fixed point theorem impulsive diferential equations positive solution fixed point theorem impulsive diferential equations
  • 相关文献

参考文献1

二级参考文献13

  • 1LIU Yuji, GE Weigao. Multiple positive solutions to a three-point boundary value problem with p-Laplacian [J]. J. Math. Anal. Appl., 2003, 277(1): 293-302.
  • 2MA Dexiang, HAN Jianxin, CHEN Xuegang. Positive solution of three-point boundary value problem for the one-dimensional p-Laplacian with singularities [J]. J. Math. Anal. Appl., 2006, 824(1): 118-133.
  • 3LI Jianli, SHEN Jianhua. Existence of three positive solutions for boundary value problems with p-Laplacian [J].J. Math. Anal. Appl., 2005, 311(2): 457-465.
  • 4LIU Bing. Positive solutions of three-point boundary value problems for the one-dimensional p-Laplacian with infinitely many singularities [J]. Appl. Math. Lett., 2004, 17(6): 655-661.
  • 5MA Dexiang, GE Weigao. Existence and iteration of positive pseudo-symmetric solutions for a three-point second-order p-Laplacian BVP [J]. Appl. Math. Lett., 2007, 20(12): 1244-1249.
  • 6LIU Bing. Positive solutions o'f'singular three-point boundary value problems for the one-dimensional p-Laplacian [J]. Comput. Math. Appl., 2004, 48(5-6): 913-925.
  • 7HE Xia, oming, GE Weiga, o. Twin positive solutions for the one-dimensional p-Laplacian boundary value problems [J]. Nonlinear Anal., 2004, 56(7): 975-984.
  • 8HE Xiaoming. Double positive solutions of a three-point boundary value problem for the one-dimensional p-Laplacian [J]. Appl. Math. Lett., 2004, 17(8): 867-873.
  • 9LI Zhlyan, YAN Shulin, GE Weigao. Multiple positive solutions to a nonlinear two-point boundary value problem with p-Laplacian [J]. J. Math. Res. Exposition, 2006, 26(3): 480-488.
  • 10AVERY R, HENDERSON J. Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian [J]. J. Math. Anal. Appl., 2003, 277(2): 395-404.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部