期刊文献+

MULTIPLE SOLUTIONS TO SINGULAR BVPS WITH VARIABLE COEFFICIENT ON THE HALF-LINE

MULTIPLE SOLUTIONS TO SINGULAR BVPS WITH VARIABLE COEFFICIENT ON THE HALF-LINE
原文传递
导出
摘要 This paper is concerned with a singular second-order nonlinear boundary value problem with a time depending on derivative operator and posed on the positive half-line. The nonlinearity is derivative-dependent, which has singularities at t=0 and/or x=0, and may change sign. The method of the upper and lower solutions on unbounded domains combined with the topological degree theory are employed to prove the existence and multiplicity of solutions. This paper is concerned with a singular second-order nonlinear boundary value problem with a time depending on derivative operator and posed on the positive half-line. The nonlinearity is derivative-dependent, which has singularities at t=0 and/or x=0, and may change sign. The method of the upper and lower solutions on unbounded domains combined with the topological degree theory are employed to prove the existence and multiplicity of solutions.
出处 《Annals of Differential Equations》 2013年第3期324-337,共14页 微分方程年刊(英文版)
关键词 lower and upper solution infnity interval sign changing nonlinearity variable coefcient derivative depending nonlinearity singularity Nagumo condition MULTIPLICITY lower and upper solution infnity interval sign changing nonlinearity variable coefcient derivative depending nonlinearity singularity Nagumo condition multiplicity
  • 相关文献

参考文献1

二级参考文献18

  • 1Baxley, J. V.: Existence and uniqueness for nonlinear boundary value problems on infinite intervals. J. Math. Anal. Appl., 147, 127-133 (1990).
  • 2Bobisud, L. E.: Existence of solutions for nonlinear singular boundary value problems. Appl. Anal., 35, 43-57 (1990).
  • 3Bobisud, L. E.: Existence of positive solutions to some nonlinear singular boundary value problems on finite and infinite intervals. J. Math. Anal. Appl., 173, 69-83 (1993).
  • 4Bosbisud, L. E., O'Regan, D., Royalty, W. D.: Solvability of some nonlinear boundary value problems. Nonlinear Anal., 12, 855-869 (1988).
  • 5Chen, S. Z., Zhang, Y.: Singular boundary value problems on a half-line. J. Math. Anal. Appl., 195, 449-468 (1995).
  • 6Granas, A., Guenther, R. B., Lee, J. W., O'Regan, D.: Boundary value problems on infinite intervals and semiconductor devices. J. Math. Anal. Appl., 116, 335-345 (1986).
  • 7Guo, D. J., Lakshmikantham, V.: Nonlinear problems in abstract cones, Academic Press, Inc., New York, 1988.
  • 8O'Regan, D.: Theory of singular boundary value problems, World Scientific, Singapore, 1994.
  • 9Habets, P., Zanolin, F.: Upper and lower solutions for a generalized Emden-Fowler equation. J. Math. Anal. Appl., 181, 684-700 (1994).
  • 10Kelevedjiev, P.: Nonnegative solutions to some singular second-order boundary value problems. Nonlinear Anal., 36,481-494 (1999).

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部