期刊文献+

纳米燃料—一种新的储能载体 被引量:3

A novel energy storage carrier:Nanofuels
下载PDF
导出
摘要 提出了以纳米燃料作为储能载体的新概念,即含能纳米微粒或载于溶液中的含能纳米颗粒悬浮液作为二次能源载体。纳米燃料的燃烧过程应用于内燃机在本文中首次提出。讨论了几类潜在的可用纳米能源,包括硅、铝和铁,以及它们的干态与湿态应用形式。纳米燃料颗粒与传统燃料颗粒相比具有显著不同的热物理性质,这些性质改变是由于尺度效应带来的,尤其是纳米尺度下非常大的比表面积增大了氧化过程中的接触面积。纳米尺度下熔点和融化潜热的降低也和尺度的减小密切相关。本文还讨论了纳米储能材料的生产、点火及燃烧的控制、燃烧产物的捕集等有关纳米储能材料实际应用中的挑战性问题。 A novel concept of nanofuels,pure energetic nanoparticles or suspensions of energetic nanoparticles in a liquid carrier,is presented here as a potential energy storage carrier.This study develops a prototype reciprocating internal combustion engine(ICE)as a model system to assess the combustion process of nanofuels.Several identified potential nanofuels,including silicon,aluminium and iron,in the form of wet-fuels and dry-fuels are investigated.Nanofuel particles are known to exhibit significantly different thermophysical properties when compared to the conventional fuel.When metallic particles approach length scales on the order of nanometers,significant changes in thermophysical properties often occur.At these dimensions,the surface-area-to-volume ratio of the particle increases considerably,and this enables providing a larger contact surface area during the rapid oxidation process.Several studies have reported lower melting points and lower heats of fusion for decreasing sizes of metal particle.Key features of the experimental assessment including nanofuels formulation and injection,ignition and combustion of nanofuels,oxide particle capture and regeneration,and engine emission,wear and lubrication are being investigated.Technological issues for the realization of the concept including nanofuel production,controlled ignition and combustion,oxidized particle capture and other related issues are discussed and key challenges are identified.
出处 《储能科学与技术》 CAS 2012年第1期41-49,共9页 Energy Storage Science and Technology
基金 国家自然科学基金(21106166) 中国科学院重点部署(KGED-EW-302-1)项目
关键词 纳米粒子 纳米燃料 储能 储能载体 纳米流体 nanoparticles nanofuels energy storage energy carrier nanofluid
  • 相关文献

参考文献6

二级参考文献96

共引文献86

同被引文献25

  • 1张建兵,方炎.激光烧蚀Ag表面的结构表征及纳米产物的光谱应用[J].光电子.激光,2005,16(7):845-849. 被引量:6
  • 2The White House Office of the Press Secretary.U.S.-China joint announcement on climate change[J].Energy of China(中国能源),2014,36(11):1.
  • 3Liu Zhenya(刘振亚).Global Energy Interconnection[M].Beijing:Academic Press Inc.,2015.
  • 4Zeman F S,Keith D W.Carbon neutral hydrocarbons[J].Philoso phical Transactions of the Royal Society A,2008,366:3901-3918.
  • 5Olah G A,Goeppert A,Surya Prakash G K.Beyond Oil and Gas:The Methanol Economy[M].2nd ed.Beijing:Chemical Industry Press,2011:268-272.
  • 6Hansen J B.Fuel processing for fuel cells and power to fuels as seen from an industrial perspective[J].Journal of Catalysis,2015,328:280-296.
  • 7Chen Hongping(陈红萍),Liang Yinghua(梁英华),Wang Ben(王奔).The development of CO2 chemical utilization and catalysis system[J].Chemical Industry and Engineering Progress(化工进展),2009,28:271-278.
  • 8Jiang Z,Xiao T,Kuznetsov V L,Edwards P P.Turning carbon dioxide into fuel[J].Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences,2010,368:3343-3364.
  • 9Aresta M,Dibenedetto A.Utilisation of CO2 as a chemical feedstock:Opportunities and challenges[J].Dalton Trans.,2007,28:2975.
  • 10Mignarda D,Sahibzadab M,Duthiec J M,Whittington H W.Methanol synthesis from flue-gas CO2 and renewable electricity:A feasibility study[J].International Journal of Hydrogen Energy,2003,28:455-464.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部