期刊文献+

平衡问题和拟?-渐近非扩张映像的强收敛定理

Strong Convergence Theorems for Equilibrium Problems and Quasi ?-asymptotically Nonexpansive Mappings
下载PDF
导出
摘要 在自反、严格凸、光滑的Banach空间中,设计了一种修正的混合投影迭代算法用来构造平衡问题与拟φ渐近非扩张映像的不动点问题的公共元,并利用广义投影算子和K-K性质证明了此迭代算法生成的序列强收敛于这两个问题的公共元.所得结果是近期相关结果的改进和推广. A modified hybrid projection iterative algorithm was introduced for finding a common element of the set of solutions of an equilibrium problem and the set of fixed point of a quasi(?)-asymptotically nonexpansive mappings in a reflexive、strictly convex and smooth Banach space.The strong convergence theorems are proved by using generalized projection operator and the K-K property.The results of this paper improve and extend recent some relative results.
作者 朱寿国
出处 《应用泛函分析学报》 CSCD 2013年第4期367-374,共8页 Acta Analysis Functionalis Applicata
基金 南京师范大学泰州学院数学分析精品课程项目(141220160314)
关键词 拟φ-渐近非扩张映像 平衡问题 修正的混合投影迭代算法 quasi Φ-asymptotically nonexpansive mapping equilibrium problem modified hybrid projection iterative algorithm
  • 相关文献

参考文献10

  • 1Takahashi W,Zembayashi K. Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces[J].Nonlinear Anal,2009,(1):45-57.doi:10.1016/j.na.2007.11.031.
  • 2Zhang C J,Li J L,Liu B Q. Strong convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces[J].{H}Computers & Mathematics with Applications,2011.262-276.
  • 3高兴慧,马乐荣,周海云.Banach空间中拟φ-渐近非扩展映像不动点的迭代算法[J].数学的实践与认识,2009,39(9):220-224. 被引量:16
  • 4高兴慧,周海云,高改良.平衡问题和不动点问题的公共元的混杂算法[J].数学物理学报(A辑),2011,31(3):720-728. 被引量:11
  • 5Xu Y C,Zhang X,Kang J L. Modified hybrid algorithm for a family of quasi-φ-asymptotically nonexpansive mappings[J].Fixed Point Theory and Applications,2010.15.
  • 6胡适耕.非线性分析·理论与方法[M]华中理工大学出版社,武汉,1996.
  • 7Alber Y I. Metric and generalized projection operators in Banach spaces:properties and applications[A].New York:Marcel Dekker,1996.15-50.
  • 8高兴慧,周海云.拟φ-渐近非扩展映像族的公共不动点的迭代算法[J].系统科学与数学,2010,30(4):486-492. 被引量:16
  • 9Alber Y I,Reich S. An iterative method for solving a class of nonlinear operator equations in Banach spaces[J].Panamer Math J,1994.39-54.
  • 10Blum E,Oetti W. From optimization and variational inequalities to equilibrium problems[J].Math Student,1994.123-145.

二级参考文献30

  • 1曾六川.Banach空间中渐近非扩张映象的修正Reich-Takahashi型迭代法的强收敛性[J].数学物理学报(A辑),2006,26(1):39-44. 被引量:2
  • 2Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive[J]. Proc Amer Math Soc, 1972, 35(1):171-174.
  • 3Xu H K. Existence and convergence for fixed point of mapping of asymptotically nonexpansive type[J]. Nonlinear Anal TMA,1991,224:91-101.
  • 4Zhang S S, Cho Y J, Zhou H Y. Iteration Methods for Nonlinear Operator Equations in Banach Spaces[M]. New York :Nova Science Publishers, 2002.
  • 5Takahashi W. Nonlinear Functional Analysis[M]. Yokohama Publishers, Yokohama,2000.
  • 6Kamimura S, Takahashi W. Strong convergence of a solutions to accretive operator inclusions and applications[J]. Set-Val-ue Anal, 2000,8 : 361-374.
  • 7Haugazeau Y. Sur les Inequations Variationnelles et la Minimisation de Fonctionnelles Convexes. Paris: Universite de Paris, 1968.
  • 8Qin X L, Su Y F. Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal., 2007, 67(6): 1958-1965.
  • 9Matsushita S, Takahashi W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space. Journal of Approximation Theory, 2005, 134: 257-266.
  • 10Zhou H Y. Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl., 2008, 343: 546-556.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部