期刊文献+

基于Bayesian推断和LS-SVM的发动机在翼寿命预测模型 被引量:6

Forecasting model of engine life on wing based on LS-SVM and Bayesian inference
下载PDF
导出
摘要 为解决发动机的寿命预测精度问题,该文将贝叶斯(Bayesian)推断应用于最小二乘支持向量机(LS-SVM)模型参数的选择,建立了发动机在翼寿命的非线性预测模型。分析了影响发动机在翼寿命的性能参数,建立了用于机器学习的预测模型训练集,构建了基于LS-SVM的发动机在翼寿命预测模型。采用Bayesian推断理论优化LS-SVM建模,获取最优建模参数。通过某型发动机在翼寿命数据集训练模型,对在翼寿命进行预测。与几种常用的算法相比较,该文模型预测精度能够提高4.58%至9.51%,较好地解决了小样本下的预测问题,具有良好的泛化能力和预测精度。 To resolve the problem of engine life forecasting accuracy,a nonlinear forecasting model for engine life on wing is established by applying Bayesian inference to the choices of model parameters of least squares support vector machine( LS-SVM). The performance parameters affecting engine life on wing are analyzed,a forecasting model training set for machine study is established,and a forecasting model of engine life on wing is established based on the LS-SVM. The LS-SVM model is optimized by using Bayesian inference,and the best modeling parameters are obtained. Theengine life on wing is forecasted by using a data set training model of a certain engine life on wing.Compared with several common algorithms,the forecasting accuracies of the model proposed here increase by 4. 58%-9. 51%,which solves the problem of forecasting of small samples,and performs well in generalization ability and forecasting precision.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期955-959,共5页 Journal of Nanjing University of Science and Technology
基金 国家“863”计划资助项目(2006AA04Z427) 国家自然科学基金(61079013 61179066)
关键词 贝叶斯推断 最小二乘支持向量机 发动机 在翼寿命 预测 Bayesian inference least squares support vector machine engine life on wing prediction
  • 相关文献

参考文献12

  • 1Vittal S,Hajela P,Joshi A. Review of approaches to gas turbine life management[A].New York,USA:American Institute for Aeronautics &Astronautics,2004.1-11.
  • 2Wang W B. A model to predict the residual life of aircraft engines based upon oil analysis data[J].{H}NAVAL RESEARCH LOGISTICS,2005,(03):276-284.
  • 3Xu D,Zhao W B. Reliability prediction using multivariate degradation data[A].Virginia,USA:IEEE,2005.337-341.
  • 4谭东宁,谭东汉.小样本机器学习理论:统计学习理论[J].南京理工大学学报,2001,25(1):108-112. 被引量:26
  • 5Vapnik V N. The nature of statistical learning theory[M].New York,USA:Springer,1999.
  • 6余正涛,邹俊杰,赵兴,苏磊,毛存礼.基于主动学习的最小二乘支持向量机稀疏化[J].南京理工大学学报,2012,36(1):12-17. 被引量:9
  • 7Suykens J A K. Least squares support vector machines for classification and nonlinear modeling[J].{H}NEURAL NETWORK WORLD,2000,(01):29-48.
  • 8Nello C;John S.An introduction to support vector machines and other kernel-based learning methods[M]{H}北京:电子工业出版社,2004.
  • 9Kowk J T. The evidence framework applied to support vector machines[J].{H}IEEE Transactions on Neural Networks,2009,(05):1162-1173.
  • 10MacKay D J C. Bayesian interpolation[J].{H}Neural Computation,1992,(03):415-447.

二级参考文献30

  • 1杨晓伟,欧阳柏平,余舒,吴春国,梁艳春.自适应迭代算法支持向量集的特性研究[J].吉林大学学报(信息科学版),2006,24(2):153-157. 被引量:4
  • 2陈爱军,宋执环,李平.基于矢量基学习的最小二乘支持向量机建模[J].控制理论与应用,2007,24(1):1-5. 被引量:21
  • 3加肇祺.模式识别[M].北京:清华大学出版社,1988..
  • 4陶少辉,陈德钊,胡望明.基于CCA对LSSVM分类器的稀疏化[J].浙江大学学报(工学版),2007,41(7):1093-1096. 被引量:2
  • 5Suykens J A K, Van Gestel T, De Brabanter J, et al. Least squares support vector machines [ M ]. Singapore: World Scientific Publishing Co Pte Ltd,2002.
  • 6Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machine: Robustness and sparse approximation [ J ]. Neuro Computing ,2002,48 ( 1 ) : 85-105.
  • 7Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning[ A]. Advances in Neural Information Processing Systems [ C ]. Cambridge, MA, USA : MIT Press, 2001:426-433.
  • 8Dong Jiaxiong,Krzyzak A,Suen C Y.Fast SVM trainingalgorithm with decomposition on very large data sets[J].IEEE Transactions on Pattern Analysis and Machine In-telligence,2005,27(4):603-618.
  • 9Joachims T.Making large scale SVM learning practical[M].Boston:MIT Press,1999:169-184.
  • 10Ji Aibing,Pang Jiahong,Li Shuhuan,Sun Jianpin.Supportvector machine for classification based on fuzzy trainingdata[A].International Conference on Machine Learningand Cybernetics[C].Dalian,China:IEEE Press,2006:1609-1614.

共引文献34

同被引文献45

引证文献6

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部