摘要
利用系数组成的代数不等式,证明E200中仅具有四种极限环的分布结论:(奇,偶)、(奇,奇)、(偶,偶)、(偶、奇),其下界至少为(i,j)分布(i,j=0.1).证明具有三阶细焦点的二次系统E203中只有一种极限环的分布结构:(奇,偶),其下界至少为(1,0)分布利用Hopf分支对函数小扰动只可能构造出极限环的(1,k)分布(k=1,2,3),其它三种分布结构不可能构造出极限环的(1,k)分布(=2,3,4)与(0,k)分布(k=1,2,3,4).
In the paper, We use ineuality consisting of coefficient, to prove there exist four kindsof distribution of limit cycle in E200: (odd, even)' (odd,odd)' (even,odd) and (even,even), Whose lower bound at least is (i,j) distribution(i,j =0, 1 ) respectly. Moreovertere is a distribution of limit cyCle in E2.3: (odd, even). Whose lower bound at least isdistribution of (1,0). We can only construct distribution(l,k) of limit cycle(k ~ 1, 2, 3)but can not construct distribution(l,k), (k~ 2, 3,4) or (o,k), (k~ 1, 2, 3, 4) of limitcycle respectly if we give small pertubation for coefficient of system.
出处
《江汉学术》
1998年第6期9-15,共7页
JIANGHAN ACADEMIC
关键词
二次系统
极限环
分布结构
quadratic system limit cycle distribution