期刊文献+

异常挖掘研究综述 被引量:2

Survey on Outlier Mining
下载PDF
导出
摘要 异常挖掘是数据挖掘的一个重要分支,已逐渐成为许多领域的有用工具。本文介绍了异常的基本含义以及异常挖掘的意义。对现有异常挖掘方法按照它们使用的主要技术进行了分类,对一些典型方法的基本思想进行了介绍,并指出了这些方法存在的局限。最后对异常数据挖掘的一些主要研究方向进行了展望。 Outlier mining is a important branch of data mining, and is becoming a growingly useful tool in many applications. This paper introduces the essential meaning of outlier and the importance of outlier mining. The authors classify existing approaches to outlier detection according to their appling primary technology,introduce the essential ideas of some typical approaches and point out their shortcoming. At the end of the paper ,the authors put forward some research direction about outlier mining in future work.
出处 《衡阳师范学院学报》 2004年第3期63-66,共4页 Journal of Hengyang Normal University
关键词 异常 异常度量 异常挖掘 Outlier Outlier measure Outlier mining
  • 相关文献

参考文献20

  • 1[1]Barnett V,Lewis T. Outliers in statistical data[M].John Wiley,1994.
  • 2[2]Velasco Fernando, Verma Surendra P. Importance of Skewness and Kurtosis Statistical Tests for outlier detection and Elimination in Evaluation of Geochemical Reference Materials[J]. Mathematical Geology,1998,30(1):109-128.
  • 3[3]Bickel, David R. Robust estimators of the mode and skewness of continuous data[J]. Computational Statistics and Data Analysis ,2002,39(2):153-163.
  • 4[4]Knorr E M,Ng R T.A Unified Approach for Mining Outliers[C]. Proceedings of the 7th CASCON Conference, Toronto, 1997.
  • 5[5]Knorr E M. Outliers and data mining:Finding exceptions in data[D].Ph.D.thesis,THE UNIVERSITY OF BRITISH COLUMBIA (CANADA),2002.
  • 6[6]Bay S D and Schwabacher M. Mining distance-based outliers in near linear time with randomization and a simple pruning rule[C]. In Proc. Int. Conf. on Knowledge Discovery in Databases,2003.
  • 7[7]Breunig M M,Kriegel H P,Ng R T et al. LOF:Identifying density-based local outliers[C]. Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'00 ),Dallas Texas,2000.
  • 8[8]Papadimitriou S,Kitagawa H,Gibbons P B and Faloutsos C. LOCI: Fast Outlier Detection Using the Local Correlation Integral[R].Technical Report,IRP-TR-02-09,2002.
  • 9[9]Jiang S Y,Li Q H,Li K L et al.GLOF:A New Approach for Mining Local Outlier[C]. Proc.Int.Conf.on Machine Learning and Cybernetics,Xi'an China,2003,5(1): 157-162.
  • 10[10]Chiu A L,Fu A W. Enhancements on local outlier detection[C].The (IEEE) 7th Int. Database Engineering and Applications symposium,(IDEAS) Hong Kong 2003.

二级参考文献39

  • 1..http://www.olapcouncil.org/research/APB 1R2_spec.pdf,1998.
  • 2Han J, Chee S, Chiang J. Issues for on-line analytical mining of data warehouses. In: Haas L, Tiwary A, eds. Proceedings of the SIGMOD'98 Workshop on Research Issues on Data Mining and Knowledge Discovery. Seattle: ACM Press, 1998.2:1~2:5.
  • 3Sarawagi S, Agrawal R, Megiddo N. Discovery-Driven exploration of OLAP data cubes. In: Schek H, Saltor F, Ramos I, Alonso G,eds. Proceedings of the 6th International Conference on Extending Database Technology. Valencia: Springer-Verlag, 1998.168~182.
  • 4Harinarayan V, Rajaraman A, Ullman J. Implementing data cubes efficiently. In: Jagadish H, Mumick I, eds. Proceedings of the ACM-SIGMOD International Conference on Management of Data. Montreal: ACM Press, 1996. 205~216.
  • 5Liang W, Orlowska ME, Yu JX. Optimizing multiple dimensional queries simultaneously in multidimensional databases VLDB Journal, 2000,8(3-4):319~338.
  • 6Srikant R, Vu Q, Agrawal R. Mining association rules with item constraints. In: Heckerman D, Mannila H, Pregibon D, eds.Proceedings of the 1997 International Conference on Data Mining and Knowledge Discovery. AAAI Press, 1997. 67~73.
  • 7Bayardo R, Agrawal R, Gunopulos D. Constraint-Based rule mining on large, dense data sets. In: Papazoglou M, ed. Proceedings of the 1999 International Conference on Data Engineering. Sydney: IEEE Computer Society, 1999. 188~197.
  • 8Klemettinen M, Mannila P, Ronkainen P. Finding interesting rules from large sets of discovered association rules. In: Nicholas C,Mayfield J, eds. Proceedings of the 3rd International Conference on Information and Knowledge Management. ACM Press, 1994.401~407.
  • 9Imielinski T, Khachiyan L, Abdulghani A. Cubegrades: Generalizing association rules. Data Mining and Knowledge Discovery,2002,6(3):219~257.
  • 10Sarawagi S. Explaining differences in multidimensional aggregates. In: Brodie M, ed. Proceedings of the 25th International Conference on Very Large Databases. Edinburgh: Morgan Kaufmann Publishers, 1999.42~53.

共引文献51

同被引文献23

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部