摘要
提出一种新的积分不等式方法,讨论线性时滞系统的时滞相关稳定性。首先利用Leibniz Newton公式以及Park不等式,建立一系列基于二次型项的积分不等式,然后利用这些不等式以及Lyapunov Krasovskii泛函方法,获得一系列基于LMI的时滞相关稳定条件。实践结果表明,利用积分不等式方法所得的时滞稳定界限具有较小的保守性。
This paper proposes a new method-integral inequality approach to discusses the condition of delay-dependent which can guarantees the stability of systems with state delay. First, a series of integral inequalities based on quadratic term are formulated by combining Leibniz-Newton formula with Park inequality. Next, using Lyapunov-Krasovskii functional method, the sufficient conditions of delay-dependent stability based on linear matrix inequality are derived to ensure that linear system with state delay is asymptotically stable, which take the existing results as special cases. Last, some examples are given to illustrate that the new method is more effective than the present methods and the delay bounds obtained in this paper are of less conservative.
出处
《中南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2004年第3期438-442,共5页
Journal of Central South University:Science and Technology
基金
教育部青年教师奖计划资助项目(教人[2002]5号)
国家博士点基金资助项目(2000053303)
关键词
线性系统
时滞相关
渐近稳定
线性矩阵不等式
linear systems
delay-dependent
asymptotic stability
linear matrix inequality