摘要
Sobolev型方程是数学物理方程中重要的一类.本文利用算子半群理论和Schauder不动点定理在Banach空间讨论了一类带有非局部条件的非线性Sobolev型积分微分系统的适度解和强解的存在性.给出了预解算子的定义、适度解和强解存在性定理以及定理的详细证明.这些结论为进一步研究此类方程的可控性提供了理论指导.
The equation of Sobolev type is an important type of mathematical physics equations.The existence of mild and strong solutions of a nonlinear integrodifferential systems of Sobolev type with nonlocal condition in Banach spaces is discussed.The results are obtained by using semigroup theory and the Schauder fixed point theorem.The definition of the resolvent operator, the theorems of existence of mild and strong solutions and their proofs are given. These results provide some theoretical advice for further controllability research of this system.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2004年第3期170-175,共6页
Journal of Yantai University(Natural Science and Engineering Edition)
关键词
积分微分系统
非局部条件
预解算子
integrodifferential systems
nonlocal condition
resolvent operator