期刊文献+

带有非局部条件的Sobolev型积分微分系统解的存在性 被引量:1

Existence of Solutions of Nonlinear Integrodifferential Systems of Sobolev Type with Nonlocal Condition in Banach Spaces
下载PDF
导出
摘要 Sobolev型方程是数学物理方程中重要的一类.本文利用算子半群理论和Schauder不动点定理在Banach空间讨论了一类带有非局部条件的非线性Sobolev型积分微分系统的适度解和强解的存在性.给出了预解算子的定义、适度解和强解存在性定理以及定理的详细证明.这些结论为进一步研究此类方程的可控性提供了理论指导. The equation of Sobolev type is an important type of mathematical physics equations.The existence of mild and strong solutions of a nonlinear integrodifferential systems of Sobolev type with nonlocal condition in Banach spaces is discussed.The results are obtained by using semigroup theory and the Schauder fixed point theorem.The definition of the resolvent operator, the theorems of existence of mild and strong solutions and their proofs are given. These results provide some theoretical advice for further controllability research of this system.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2004年第3期170-175,共6页 Journal of Yantai University(Natural Science and Engineering Edition)
关键词 积分微分系统 非局部条件 预解算子 integrodifferential systems nonlocal condition resolvent operator
  • 相关文献

参考文献6

  • 1Balachandran K, Uchiyama K. Existence of nonlinear integrodifferential equations of Sobolev type with nonlocal condition in Banach spaces[J]. Indian Acad Sci, 2000,110(2):225~232.
  • 2Balachandran K, Park J Y. Existence of solutions and controllability of nonlinear integrodifferential systems in Banach spaces[J]. Mathematical Problems in Engineering,2003, (2): 65~79.
  • 3Balachandran K, Karunanithi S. Regularity of solutions of Sobolev type semilinear integro-differential equations in Banach spaces[J]. ElectronicJournal of Differential Equations,2003,114:1~8.
  • 4Sobolev S. Some New Problems in Mathematical Physics[M]. Izv Akad Nauk SSSR Ser Mat, 1954,18:3~50.
  • 5Huilgol R. A second order fluid of the differential type[J]. Internat J Nonlinear Mech, 1968,3: 471~482.
  • 6Grimmer R C. Resolvent operators for integral equations in a Banach space [J]. Trans Amer Math Soc,1992,273 (1): 333~349.

同被引文献7

  • 1张恭庆.泛函分析讲义[M].北京:北京大学出版社,1986..
  • 2Balachandran K, Dauer J P. Local controllability of semilinear evolution systems in Banach spaces[J]. Indian J. Pure Appl. Math,1998,29(3):311-320.
  • 3Balachandran K, Park J Y. Existence of solutions and controllability of nonlinear integro-differential systems in Banach spaces[J]. Mathematical Problems in Engineering,2003,(2):65-79.
  • 4Balachandran K, Karunanithi S. Regularity of solutions of Sobolev type semilinear integro-differential equations in Banach spaces[J]. Electronic Journal of Differential Equations,2003, (114):1-8.
  • 5Naito K.On controllability for a nonlinear Volterra equation[J]. Nonlinear Anal,1992,18(1):99-108.
  • 6Park J Y, Han H K. Controllability of nonlinear funcitional integro-differential systems in Banach space[J]. Nihonkai Math. J.,1997,8(1):47-53.
  • 7Grimmer R C. Resolvent operators for integral equations in a Banach space [J]. Trans. Amer. Math. Soc.,1992,273(1):333-349.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部