期刊文献+

带惩罚项的自适应非参数回归方法

Method of Non-parametric Regression with Penalty Term to Determine Adaptively the Fitting Function
下载PDF
导出
摘要 针对曲线拟合问题,提出了用带惩罚项的自适应非参数回归方法来确定一组数据的拟合函数,并主要讨论了此方法中正则化参数的确定问题,其中包括凭主观选择法和交叉验证法以及通过非线性函数方程来确定正则化参数.最后,采用Matlab编程对一些实际例子进行了试算,其中应用了不同的方法,并且对一个实际问题采用不同方法进行了处理,并做出了比较.通过比较可看出,用带惩罚项的自适应非参数回归方法来确定一组数据的拟合函数的效果良好. Aiming at curve fitting question, a method of non-parametric regression with penalty term to determine adaptively the fitting function of a group of data is presented, emphasing on the problem of determining the regular parameter of the method, including subjective back-and-forth method and cross validating method. With these methods the regular parameter are determined certainly by means of nonlinear function equations. Fanally, some examples are computed with different methods by Matlab programming. With these actual examples, the results are compared through various methods. This shows these methods are effective.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2004年第3期176-182,共7页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 山东省自然科学基金资助项目(Q99A09).
关键词 曲线拟合 自适应 带惩罚项 非参数回归 curve fitting, self-adapting penalty term non-parametric regression
  • 相关文献

参考文献4

  • 1Ganderw HrebicekJ 刘来福 何青译.用Maple和Matlab解决科学计算问题[M].北京:科学出版社,1999.491-509.
  • 2Cheng J, Yamamoto M. One new strategy for a priori choice of regularizing parameters in Tikhonov' s regulariation[J]. Inverse Problems, 2000, 16: 31~38.
  • 3贾现正,王彦博,程晋.散乱数据的数值微分及其误差估计[J].高等学校计算数学学报,2003,25(1):81-90. 被引量:11
  • 4Milan K E, Vladimir H E. Numerical Solution of Nonlinear Boundary Value Problems with Applications[M]. New Jersey:Prentice-hall INC, Englewood Cliffs,1983.11~38.

二级参考文献12

  • 1[1]Cheng, J. and Yamamoto, M.. One new strategy for a priori choice of regularizing parametersin Tikhonov's regularization. Inverse Problems, 2000, 16:L31-L38
  • 2[2]Deans. S.R.. Radon transform and its applications. A Wiley-Interscience Publication, 1983
  • 3[3]Engl, H.W., Hanke, M. and Neubauer. A.. Regularization of Inverse Problems, 1996
  • 4[4]Gorenflo, R. and Vessella, S.. Abel integral equations. Analysis and Applications. Lecture Notes in Mathematics, 1461. Springer-Verlag, Berlin, 1991
  • 5[5]Groetsch, C.W.. The theory of Tikhonov regularization for Fredholm equations of the first kind. Research Notes in Mathematics, 105. Pitman (Advanced Publishing Program), Boston, Mass-London, 1984
  • 6[6]Hammerlin, G. and Hoffmann, K.H.. Numerical mathematics. New York: Springer-Verlag,1991
  • 7[7]Hanke, M. and Scherzer, O.. Inverse problems light: numerical differentiation. Amer. Math. Monthly, 2001, 108(6):512-521
  • 8[8]Hegland, M.. Resolution enhancement of spectra using differentiation. Preprint 1998
  • 9[9]Reinsch, C.H.. Smoothing by spline functions. Numer. Math., 1967, 10:177-183
  • 10[10]Schumaker, L.L.. Spline functions: basic theory. Wiley, New York, 1981

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部