摘要
本文研究由实系数线性微分算子Q_(k,σ)(D)=Dσsum form j=1 to (?)(D-tj)所定义的2π周期函数类,integyal form n=0 to 2π(Q_(k,σ))(D)f(X)dx=O;并给出其单边宽度d_n^+(m_(k,σ,1);L,)的精确估计值,以及达到其d(2n-1)^+((?)_(k,σ,1)) L,)的最优子空间。本文的结果推广了。
In this paper, we studied the Class mk、σ、p ={ f∈ Lpk+σ}| Qk,σ(D)f || P≤1,∫02π Qk、σ(D)f(x)dx = 0} of smooth functions, which defined by the linear differentialoperator Qk、σ(D) = Dσmultiply from j=1 to k(D- tj). We given the exact estimation of dn+(mk、σσ; L1 ) and the optimal subspace of d2n-1+ ( mk、σ、1 , 0, L1). The paper improved.[3]
关键词
周期函数
单边宽度
最优子空间
periodic function, one-sided widths, optimal subspace.