期刊文献+

脆性材料损伤的概率统计模型研究 被引量:5

A Statistical Damage Model of Brittle Materials
下载PDF
导出
摘要 假设脆性材料的强度服从 Weibull统计分布 ,用圆盘扁平裂纹模型模拟材料中的微缺陷 ,运用断裂力学知识和统计理论 ,推导出了在任意应力状态下材料的损伤概率统计模型 ,并讨论了不同应力状态下材料损伤量的大小关系 ,以及损伤量与材料的体积和材料性能参数之间的关系 :在拉应力状态下 ,损伤量的大小满足 D(σ,σ,σ) >D(0 ,σ,σ) >D (σ,0 ,0 ) ;在压应力状态下 ,损伤量的大小关系则为 D(-σ,0 ,0 ) >D(0 ,-σ,-σ) >D (-σ,-σ,-σ) ;结构的受力体积V增大 。 Assuming that the brittle materials′ strength satisfies Weibull′s distribution, a statistical damage model of brittle materials developed by means of selecting penny shaped crack models to simulate the defects in the materials and using statistical fracture theory. The relations of the damages under different stress states and that of the damages with the material′s parameters are discussed. Under tensile stress states, the damage satisfies the following relation:D(σ,σ,σ)>D(0,σ,σ)>D(σ,0,0); Under compression stress states, the relation is: D(-σ,0,0)>D(0,-σ,-σ)> D(-σ,-σ,-σ); The greater the volume of the materials stressed, the greater the damage.
作者 朱乃龙
出处 《武汉理工大学学报》 CAS CSCD 2004年第7期68-71,共4页 Journal of Wuhan University of Technology
关键词 统计分布 断裂力学 等效应力 破坏固体角 期望强度 statistical distribution fracture mechanics effective stress solid angle of failure expectation strength
  • 相关文献

参考文献10

  • 1Schlangen E, Mier J G. Simple Lattice Model for Numerical Simulation of Fracture of Concrete Materials and Structures[J]. Mater Struct, 1992, 25: 534~542.
  • 2Frantziskonis G. Heterogeneous Solids-Part I: Analytical and Numerical 1-D Results on Boundary Effects[J]. Eur J Mech A/Solids, 1997, 16(3): 409~423.
  • 3Blair S C, Cook N G. Analysis of Compressive Fracture in Rock Using Statistical Techniques[J]. Int J Rock Mech Min Sci, 1998, 35(7): 837~848.
  • 4Tang C A. Numerical Simulation of Cumulative Damage and Seismic Energy Release During Brittle Rock Failure[J]. Int J Rock Mech Min Sci, 1998, 35(2): 113~121.
  • 5Zhu Nai-long. Evaluation of Brittle Material′s Strength in Multiaxial Stress State[A]. Proc First Int Conf on Engineering Computation and Computer Simulation[C].Changsha:Hunan University Press,1995.72~75.
  • 6朱乃龙,张季如.压应力状态下统计断裂理论的研究[J].武汉工业大学学报,1996,18(2):41-42. 被引量:1
  • 7朱乃龙.多轴应力状态下脆性材料强度的估算[J].武汉理工大学学报,2004,26(6):29-31. 被引量:6
  • 8Diao Xiao-xue. A Statistical Equation of Damage Evolution[J]. Eng Fract Mech, 1995, 52(1): 33~42.
  • 9Krajcinovic D. Statistical Aspects of the Continuous Damage Theory[J]. Int J Solids Structure,1982,18(7): 551~562.
  • 10Lemaitre J. How to Use Damage Mechanics[J]. Nuclear Engineering and Design,1984,80:233~245.

二级参考文献6

  • 1Matsuo Y.Statistical Fracture Theory for Multiaxial Stress Using Weibull's Three-parameter Function[J].Eng Frac Mech,1981,14:527~538.
  • 2Blair S C,Cook N G.Analysis of Compressive Fracture in Rock Using Statistical Techniques [J].Int J Rock Mech Min Sci,1998,35(7):837~848.
  • 3Zhu Nailong.Evaluation of Brittle Materials' Strength in Multiaxial Stress State[A].Proc First Int Conf on Engineering Computation and Computer Simulation[C].Changsha:Hunan University Press,1995.72~75.
  • 4Batdorf S B.Fundamentals of the Statistical Theory of Fracture,Fracture Mechanics of Ceramics [M].New York:Plenum Press,1978.1~31.
  • 5Batdorf S B,Sines G.Combining Data for Improved Weibull Parameter Estimation[J].Am Cer Soc,1980,63(3~4):214~218.
  • 6Alpa G.On a Statistical Approach to Brittle Rupture for Multiaxial Statesof Stress[J].Eng Frac Mech,1984,19:881~901.

共引文献5

同被引文献29

  • 1朱乃龙,饶云刚.基于统计断裂理论的岩石类材料本构模型的研究[J].岩石力学与工程学报,2006,25(z2):3939-3944. 被引量:8
  • 2张明,李仲奎,苏霞.准脆性材料弹性损伤分析中的概率体元建模[J].岩石力学与工程学报,2005,24(23):4282-4288. 被引量:29
  • 3朱乃龙.基于统计断裂理论的混凝土本构关系的研究[J].武汉理工大学学报,2007,29(2):58-61. 被引量:3
  • 4Liu P L, Der Kiureghian A. Optimization algorithms for structural reliability [J]. Structural Safety, 1991, 9(3): 161 - 177.
  • 5Voon K C, Lngham J M, Ascm M. Design expression for the in-plane shear strength of reinforced concrete masonry [J]. Journal of Structural Engineering, 2007, 133(5): 706 -713.
  • 6Feng Xiqiao, Yu Shouwen. Analysis of modoe-I crack tip shielding by microcracking in brittle materials [J]. Journal of Tsinghua University (Science and Technology), 1997, 2(2): 523-528.
  • 7Horst Fischer, Walter Rentzsch, Rudolf Marx. A modified size effect model for brittle nonmetallic materials [J]. Engineering Fracture Mechanics, 2002, 69:781-791.
  • 8Zhu Nailong. Evaluation of brittle material's strength in multiaxial stress state [C]. Proc 1st Int Conf on Engineering Computation and Computer Simulation. Changsha: Hunan University Press, 1995: 72- 75.
  • 9Batdorf S B. Fundamentals of the statistical theory of fracture [C]// Edited by Bradt. New York: Plenum Press, 1978, 3: 1-31.
  • 10Evans A G. Evaluation of a fundamental approach for the statistical analysis of fracture [J]. Journal of the American Ceramic Society, 1978, 61: 156-162.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部