期刊文献+

Ni掺杂对纳米结构牡丹花状CeO_2材料催化特性的影响(英文) 被引量:1

Effect of Ni doping on the catalytic properties of nanostructured peony-like CeO_2
下载PDF
导出
摘要 制备了一种新型Ni掺杂多层纳米结构牡丹花状CeO2材料,研究了其催化性能,同时与Ni负载牡丹花状CeO2样品进行了比较.结果表明,Ni掺杂CeO2样品具有纳米晶粒和开放的介孔结构,特殊的形貌使其在CO氧化和甲烷部分氧化反应中具有独特的催化特性.Ni掺杂后,CeO2中产生了多余氧空位,同时其氧化还原活性也增强,其在CO氧化反应中的催化活性明显高于纯CeO2和Ni负载CeO2样品;在甲烷部分氧化反应中,牡丹花状CeO2负载3atm%Ni催化剂样品上甲烷转化率高于所有Ni掺杂的催化剂样品.但是在Ni负载型催化剂和花状CeO2催化剂上,甲烷的起始转化温度为400oC,而5.7atm%Ni的掺杂使其降至340oC. Nanostructured ceria materials have attracted wide attention as catalysts, and the doping of these materials with rare earth elements to modify their catalytic activity has been comprehensively investigated. A novel type of Ni-doped hierarchical nanostructured peony-like ceria (PCO) has been prepared and its catalytic activity is investigated and compared with that of Ni-loaded samples. The prepared Ni-doped ceria have nanoscale grain sizes and open mesopores. This unique morphology endows it with superior catalytic activity for the oxidation of CO and the partial oxidation of methane. It is found that extra oxygen vacancies are generated in the ceria, and the reducibility of the ceria is highly enhanced after Ni-doping. The catalytic activity for CO oxidation is improved after Ni-doping, compared with that of pure ceria and Ni-loaded ceria. In the reaction for the partial oxidation of methane, the 3.8 atm% Ni-loaded PCO sample realizes a higher CH4 conversion than the Ni-doped ceria. However, it is found that the onset temperature for CH4 conversion decreases from 400°C for the pure PCO and 3.8 atm% Ni-loaded PCO sample, to 340°C for the 5.7 atm% Ni-doped PCO sample.
出处 《催化学报》 SCIE EI CAS CSCD 北大核心 2013年第2期305-312,共8页
基金 supported by the National Natural Science Foundation of China(511172275) the National Basic Research Program of China(973 Program,2012CB215402)~~
关键词 纳米结构氧化铈 一氧化碳 氧化 甲烷 部分氧化 Nanostructured ceria Nickel Carbon monoxide Oxidation Methane Partial oxidation
  • 相关文献

参考文献59

二级参考文献58

  • 1金恒芳,胡延平,李灿,辛勤.二氧化铈还原表面上水煤气变换反应机理[J].催化学报,1996,17(2):123-127. 被引量:11
  • 2Burch R.Phys Chem Chem Phys,2006,8:5483.
  • 3Haruta M,Yamada N,Kobayashi T,Iijima S.J Catal,1989,115:301.
  • 4Andreeva D,Idakiev V,Tabakova T,Andreev A.J Catal,1996,158:354.
  • 5Andreeva D,Idakiev V,Takova T,Ilieva L,Falaras P,Bourlinos A,Travlos A.Catal Today,2002,72:51.
  • 6Fu Q,Saltsburg H,Flytani-Stephanopoulos M.Science,2003,301:935.
  • 7Fu Q,Deng W L,Saltsburg H,Flytani-Stephanopoulos M.Appl Catal B,2005,56:57.
  • 8Luengnaruemitchai A,Osuwan S,Gulari E.Catal Commum,2003,4:215.
  • 9Venezia A M,Liotta L F,Pantaleo G,La Parola V,Deganello G,Beck A,Koppány Z,Frey K,Horváth V,Gruci L.Appl Catal A,2003,251:359.
  • 10麻春艳 李新华 金明善 廖卫平 管仁贵 索掌怀.催化学报,2007,28:535-535.

共引文献12

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部