期刊文献+

函子范畴的Smath积

The Smath Product of the Functor Category
下载PDF
导出
摘要 证明了k上G-分次范畴的函子范畴仍是k上G-分次范畴.并在此基础上,考虑k上G-分次范畴的冲积范畴与函子范畴的关系,证明了(D#G)C≌DC#G. A proof is obtained that the functor of the G-grade category is also the G-grade category.On the basic of it,considering the relation between the smath product of G-grade category and the function category,another proof of(D#G)C ≌ DC #G is obtained.
出处 《福建师大福清分校学报》 2013年第2期5-8,共4页 Journal of Fuqing Branch of Fujian Normal University
基金 福建省教育厅资助项目(JB10194)
关键词 函子范畴 上分次范畴 冲积范畴 functor category functor of the G-grade category smath product category
  • 相关文献

参考文献5

  • 1Wikipedia. Functor category[OL].http://en.Wikipedia.org/wiki/Functor category,.
  • 2Cibils C,Marcos E N. Skew category,galois covering and smash product of a k-category[J].{H}Proceedings of the American Mathematical Society,2006.39-50.
  • 3Xu Fei. Representations of categories and their applications[D].School of Mathematics,University of Minnesota,2006.
  • 4曾灿波,陈清华.k上G-分次范畴的平凡扩张[J].福建师范大学学报(自然科学版),2008,24(2):17-21. 被引量:6
  • 5冯清,范馨香,陈清华.函子范畴与k-范畴[J].福建师大福清分校学报,2010,28(5):9-12. 被引量:3

二级参考文献11

  • 1Wikipedia.Functor category[DB/OL].http://en.wikipedia.org/wiki/Functor category.
  • 2Cibils C,Marcos E N,Skew category,galois covering and smash product of a k-category[J].Proe Amer Math Soe,2006, ( 134):39-50.
  • 3Xu Fei.Representations of categories and their applications[D].School of Mathematics,Univer-sity of Minnesota,2006.
  • 4Robert M Fossum, Phillip A Griffith, Idun Reiten. Trivial extensions of abelian categories [M]. Berlin-HeidelbergNewYork: Springer-Verlag, 1975.
  • 5Claude Cibils, Eduardo N Marcos, Skew category, galois covering and smash product of a k-category [J]. Proc Amer MathSoc,2006, 134: 39-50.
  • 6Xu Fei, Representations of categories and their applications [D], School of Mathematics, University of Minnesota, 2006.
  • 7Nastasescus C, Oystaeyen F Van , Methods of graded rings [M]. Berlin-Heidelberg-NewYork: Springer-Verlag, 2004.
  • 8Frank W, Anderson Kent R Fuller. Rings and categories of modules (2nd edition) [M]. New York: Spring-Verlag, 1992.
  • 9Cohen M, Montgomery S. Group-graded rings, smash products and group actions [J]. Trans Amer Math Soc, 1984, 282: 237-258.
  • 10Ringel C M, Tame algebras and integral quadratic forms [M]. New York: Springer-Verlag, 1984.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部