期刊文献+

平方根平均、反调和平均和Seiffert平均的最优凸组合不等式 被引量:1

The Optimal Convex Combination Inequality of Square-Root and Contra-harmonic Means for the Seiffert Mean
下载PDF
导出
摘要 应用初等微积分知识,找到并证明了最大值α和最小值β,使得对所有的a,b>0,a≠b双向不等式αN1(a,b)+(1-α)C(a,b)<P(a,b)<βN1(a,b)+(1-β)C(a,b)成立,其中P(a,b)、N1(a,b)、C(a,b)分别定义为两个正数a,b的Seiffert平均、平方根平均、反调和平均. In the paper,we discover and prove by using the elementary differential calculus the greatest valuesαand the least valuesβ,such that the double inequalitiesαN1(a,b)+(1-α)C(a,b)<P(a,b)<βN1(a,b)+(1-β)C(a,b)holds for all a,b>0with a≠b,Here N1(a,b),C(a,b)and P(a,b)denote the square-root,contra-harmonic and first seiffert means of two positive real numbersαandβ,respectively.
出处 《湖州师范学院学报》 2013年第6期19-23,共5页 Journal of Huzhou University
基金 国家开放大学基金项目(Q1601E-Y) 浙江广播电视大学2013年度重点课题(XKT-13Z04)
关键词 SEIFFERT平均 平方根平均 反调和平均 最优凸组合不等式 seiffert mean square-root mean contra-harmonic mean optimal convex combination inequality
  • 相关文献

参考文献11

  • 1Seiffert H J. Problem 887[J].Nieuw Arch Wisk (4),1993,(02):176-177.
  • 2Neuman E,Sàndor J. On the Schwab-Borchardt mean[J].Math Pannon,2003,(02):253-266.
  • 3Beckenbach E F,Bellman R. Inequalities[M].New York:springer-verlag,1971.
  • 4Seiffert H J. Ungleichungen für einen bestimmten Mittelwert[J].Nieuw Arch Wisk,1995,(04):195-198.
  • 5Sàndcr J. On certain inequalities for means Ⅲ[J].Archiv der Mathematik,2001,(01):34-40.
  • 6Histo P A. Optimal inequalities between Seiffert' s mean and power means[J].Mathematical Inequalities and Applications,2004,(01):47-53.
  • 7Chu Yu-Ming,Qiu Ye-Fang,Wang Miao-Kun. The optimal convex combination bounds of arithmetic and har-monic means for Seiffert's mean[J].Journal of Inequalities and Applications,2010.7,ArticleID436457.
  • 8Wang Shan-Shan,Chu Yu-Ming. The best bounds of the combination of arithmetic and harmonic means for the Seiffert's mean[J].Journal on Mathematical Analysis,2010,(21-24):1079-1084.
  • 9Wang Miao-Kun,Qiu Ye-Fang,Chu Yu-Ming. Sharp bounds for Seiffert means in terms of Lehmer means[J].J Math Inequal,2010,(04):581-586.
  • 10Chu Yu-Ming,Qiu Ye-Fang,Wang Miao-Kun. Sharp power mean bounds for the combination of Seiffert and geometric means[J].Abstract and Applied Analysis,2010.12,ArticleID108920.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部