期刊文献+

小波法求解分数阶微分方程的误差估计 被引量:1

Error estimation of wavelet method to solve fractional differential equations
下载PDF
导出
摘要 针对求解分数阶微分方程数值解和所得结果误差大小问题.采用Haar小波分数阶积分算子矩阵方法,得到一类变系数分数阶微分方程数值解.利用所得算子矩阵将原分数阶微分方程转化为代数方程组,进而便于编程求解.讨论算法的误差分析,给出相应的误差估计式,并证明该算法是收敛的.结果表明:随着点数的增多,所得数值解与精确解的误差也越来越小.最后,数值算例验证了方法的有效性以及理论分析的正确性. Focusing on the problem of the numerical solution of fractional differential equations and the errors of the obtained result,this study provided the numerical solutions to a class of fractional differential equations with variable coefficient by using Haar wavelets operational matrix of fractional order integration,and transformed the initial fractional differential equations into a system of algebraic equations by using the obtained operational matrix,and then implemented the solution by software.This paper mainly discussed the error analysis of the method and have obtained the error estimation,and also proved that the method is convergent.The results show that the more points,the higher precision between the numerical solution and the exact solution.Finally,numerical example is provided to verify the validity of the method and the correctness of the theoretical analysis.
作者 徐琳 李秀云
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第8期1133-1136,共4页 Journal of Liaoning Technical University (Natural Science)
基金 河北省自然科学基金资助项目(A2011205012)
关键词 HAAR小波 变系数 分数阶微分方程 算子矩阵 误差分析 误差估计式 精确解 数值解 Haar wavelet variable coefficient fractional differential equations operational matrix error analysis error estimation exact solution numerical solution
  • 相关文献

参考文献10

  • 1任建娅,尹建华,耿万海.小波方法求一类变系数分数阶微分方程数值解[J].辽宁工程技术大学学报(自然科学版),2012,31(6):925-928. 被引量:12
  • 2尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 3Samko S G,Kilbas A A,Marichev O I.Fractional Integrals and Derivatives: Theory and Applications,1993.
  • 4Podlubny I.Fractional Differential Equations,1999.
  • 5Kalla I E.Convergence of the Adomian method applied to a class ofnonlinear integral equationsApplied Mathematics Letters,2008.
  • 6Z Odibat,S Momani,VS Erturk.Generalized differential transform method: application to differential equations of fractional orderApplied Mathematics and Computation,2008.
  • 7M Rehman,RA Khan.The Legendre wavelet method for solving fractional differential equationsCommun Nonlinear Sci Numer Simulat,2011.
  • 8Saeedi H,Mohseni M.A CAS wavelet method for solving nonlinearFredholm integro-differential equations of fractional orderCommunNonlinear SciNumerSimulat,2011.
  • 9Chen Y M,Wu Y B.Wavelet method for a class of fractionalconvection-diffusion equation with variable coefficientsJournal ofComputational Science,2010.
  • 10Sun H,Chen W.Finite difference schemes for variable-order timefractional diffusion equationInternational Journal of Bifurcation andChaos,2012.

二级参考文献14

  • 1陈景华.Caputo分数阶反应-扩散方程的隐式差分逼近[J].厦门大学学报(自然科学版),2007,46(5):616-619. 被引量:14
  • 2李弼程;罗建书.小波分析及其应用[M]北京:电子工业出版社,2005.
  • 3葛哲学;沙威.小波分析理论与Matlab实现[M]北京:电子工业出版社,2007.
  • 4Samko S G,Kilbas A A,Marichev O I. Fractional integrals and derivatives:theory and application applications[M].Am2 sterdam:Gordon and Breach,1993.
  • 5N'Géreékata G M. A Cauchy problem for some fractional abstract differential equations with fractional order with nonlocal conditions[J].Nonlinear Analysis,2009,(70):1873-1876.doi:10.1061/(ASCE)IR.1943-4774.0000211.
  • 6Gorenflo R,Mainardi F,Moretti D. Time fractional diffusion:a discrete random walk approach[J].Journal of Nonlinear Dynamics,2000,(03):129-143.doi:10.1007/s00203-009-0496-5.
  • 7Huang F,Liu F. The fundamental solution of the space-time fractional advection disersion equation[J].Journal of Applied Mathematics and Computing,2005,(02):339-350.
  • 8Rawashdeh E. Numerical solution of fractional integro-differential equations by collocation method[J].Applied Mathematics and Computation,2006,(07):176-186.
  • 9Saeedi H. A CAS wavelet method for solving nonlinear Fredholm integro-differential equation of fractional order[J].Commun Nonlinear Sci Numer Simulat,2011,(10):1154-1163.
  • 10Maleknejad K. An efficient numerical approximation for the linear class of Fredholm integro-differential equations based on Cattani's method[J].Commun Nonlinear Sci Numer Simulat,2011,(16):2672-2679.doi:10.1016/j.jtbi.2009.11.021.

共引文献27

同被引文献7

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部