期刊文献+

壁面驱动粘性不可压缩半圆形空腔流的数值模拟 被引量:3

Numerical simulation of wall-driven incompressible viscous flow in a semi-circular cavity
下载PDF
导出
摘要 采用基于特征线的算子分裂(CBOS)有限元法对壁面驱动粘性不可压缩半圆形空腔流数值模拟研究.得到不同雷诺数下半圆形空腔流的流场达到稳定时速度分量沿x=-0.25和y=0.5的分布和流场中涡结构随雷诺数增加的变化情况.在较少的网格数和较大的时间步长下,达到稳定时的速度场计算结果与已有文献结果十分吻合.同时,捕捉到了流场中涡结构随雷诺数的变化,随着雷诺数的增加,在半圆形空腔中,涡结构越来越复杂,涡的数量也在上升.结果表明:CBOS有限元法采用非结构网格对具有曲线边界的半圆形流进行模拟时具有较高的精度和稳定性,能够很好地捕捉流场中涡结构随雷诺数的变化. The characteristic-based operator-splitting(CBOS) finite element method is applied to simulate the wall-driven incompressible viscous flow in a semi-circular cavity at different Reynolds numbers. The velocity component and the streamlines are available. At less number of grids and a significant larger time step, the present results of the horizontal and vertical velocity profiles, respectively, along the vertical line x=-0.25and the horizontal line y=0.5 are in good agreement with the other numerical solutions. Especially worth mentioning here is the capture of the change of vortex structure. With the Reynolds numbers increase, the numbers of vortex also increase and the vortex structure becomes more complex. All the above shows that the CBOS finite element method is very effective on problems with non-orthogonal grid mesh.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第10期1393-1398,共6页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(41072235) 辽宁省自然科学基金资助项目(20102006)
关键词 CBOS有限元 算子分裂法 特征线 粘性不可压缩流 半圆形空腔 非结构网格 速度 涡结构 CBOS finite element method operator-splitting algorithm characteristic incompressible viscous flow semi-circular cavity non-orthogonal grid mesh velocity vortex structure
  • 相关文献

参考文献11

二级参考文献43

  • 1韩善灵,朱平,林忠钦.基于格子Boltzmann方法模拟方腔顶盖驱动流[J].中国机械工程,2005,16(1):64-66. 被引量:5
  • 2高殿荣,郭明杰,李华.带有方腔的管道流动流场的有限元数值模拟[J].流体机械,2005,33(3):26-29. 被引量:3
  • 3田振夫.求解泊松方程的紧致高阶差分方法[J].西北大学学报(自然科学版),1996,26(2):109-114. 被引量:11
  • 4李世武,熊莉芳.封闭方腔自然对流换热的研究[J].工业加热,2007,36(3):10-13. 被引量:33
  • 5Brooks A N, Hughes T J R. Streamline upwind/Petrov- Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier- Stokes equations [J]. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1-3): 199-259.
  • 6Donea J. A Taylor-Galerkin method for convective transport problems [J]. International Journal for Numerical Methods in Engineering, 1984, 20(1): 10!- 119.
  • 7Hughes T J R, Franca L P, Hulbert G M. A new finite element formulation for computational fluid dynamics, VIII: The Galerkin/least-squares method for advective-diffusive oquations [J]. Computer Methods in Applied Mechanics and Engineering, 1989, 73(2): 173- 189.
  • 8Pironneau O, Liou J, Tezduyar 17. Characteristic-Galerkin and Galcrkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 100(1): 117- 141.
  • 9Donea J, Giuliani S, Laval H. Finite clcmcnt solution of the unsteady Navier-Stokcs equations by a fractional step method [J]. Computer Methods in Applied Mechanics and Engineering, 1982, 30(1): 53-73.
  • 10Chorin A J. Numerical solution of the Navier-Stokes equations [J]. Mathematics of Computation, 1968, 22: 745 -762.

共引文献26

同被引文献43

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部